2023年考研数学大纲:与往年难度保持一致

2023年考研数学大纲:与往年难度保持一致

  今年的数学考验大纲跟去年从三个方面进行解读:

  第一,试卷的内容。今年的考试大纲依然保持了数学一和数学三在高等数学占比是56%。线性代数和概率各占22%。数学二,依然是高等数学占了78%,线性代数占了22%。从试卷内容的结构上,跟往年来比没有任何变化。

  第二,试卷的题型结构。试卷的题型结构保持了三种题型。第一种题型是选择题。第二种题型是填空题。第三种题型是解答题。题型的比例依然是保持了8、6、9的分布,有8个选择、6个填空、9个大题。分值和题型的结构跟往前是保持一致的。最主要的一块是考点和考试要求,我们把今年的考试大纲和往年的考试大纲进行了认真的对比,结果发现无论是考点和考试要求上都与去年没有任何变化。对于广大考生来说这也是一个比较好的消息。我们广大考生对自己的数学复习不需要做任何调整,按部就班进行后续的复习就可以了。

  今年考研数学的难度,首先要看近几年数学考研难度的变化,2008年和2009年考研数学的难度是基本保持一致的。对于数学一、数学二和数学三都是这样一种情况。到了2010年,数学一的难度稍微有所上升,数学二和数学三保持了平稳的难度。2011年数学一和数学二、数学三的难度都略有微调,从大家的平均分可以看出来,从去年的考试分数来看一、二、三的平均分较往年有所上升。广大考生也不用担心考试变难如何应对,实际上跨考教育数学教研室考研命题组一直是本着对“三基”的一个基本要求。也就是注重对基本概念和性质,基本方法和基本能力的考查。这样我们广大网友在课下的复习当中,只要抓住了基础,以不变应万变,无论考试大纲或者是考试难度有怎样的调整,都会在最终的考试当中取得一个比较理想的成绩。

  高等数学。一是函数极限部分,求极限是一个基本题型,也是一个基本的运算能力。广大网友一定要对它的基本方法和运算思路理解到位。第一章当中除了求极限之外,还有无穷小的比较,等价无穷小这样一个概念,以及无穷小的阶的比较都是往年考查的重点,也希望大家在复习当中予以关注。另外,关于间断点类型的判断,这块出题也是比较频繁的,大家在复习当中要引起重视。

  二是一元函数的微分学。大家一定要注意导数的定义,对它有一个正确的理解,包括导数概念的一些充要条件要清楚。提醒大家一定要注意关于复合函数求导和隐函数求导的一个应用。在函数微分学当中还有导数的应用,这是一个比较大的内容,函数的单调性、凹凸性以及方程根的应用都会在这块内容当中出题,这是一个难点。

  课本上还有关于微分中值定理的部分,大家比较担心它会不会出证明题,证明题一直是大家的一个难点,实际上大家没有必要有这样的担心。我们今年的考试大纲分析当中明确了这样一个特点,对于微分学当中比较重要的定理,像微分中值定理隐函数存在定理,这些定理注重对基本内容、基本性质,以及使用方法的考查。我们对于证明题这块,只要求大家掌握常见的解题思路就可以了。

  还有一元函数的积分学,大家注意一下变上限积分,它的连续性、可导性、奇偶性、周期性都是我们考查的重点。变上限积分函数跟微分方程结合的一个点也可以出题的。还有定积分的应用,平面当中求面积,求旋转体的体积,一定要熟悉。

  多元函数的微积分学。微分学要重点掌握多元函数连续,多元函数偏导数存在以及偏导数存在以及可微这三者之间的关系。另外,计算一定要掌握多元复合函数求导和多元隐函数求导。积分学当中数二和数三的同学,重点非常单一了,我们要掌握二重积分的计算,包括二重积分的基本计算,选择合适的坐标系,选择合适的积分次序,以及进行必要的简化计算等等,这些都是我们的基本运算。这一部分一定要非常熟练。

  对于数一的同学,还多了一块三重积分和曲线积分、曲面积分,我们数一的同学一定要更多关注二型曲线积分和二型曲面积分的计算,它跟格林公式结合都是可以出大题的。另外曲线积分与路径无关的条件,也是考查的一个重点。这是多元函数微积分学的重点。

  还有微分方程,除了要求大家掌握大纲上关于常见的几类微分方程的求解方法之外,提醒大家还要注意微分方程的一些综合题。比如前面提到的微分方程和变上限积分函数相结合,和多元函数的微分学和积分学都可以结合,对这块大家要格外注意一下。

  微分方程数三多了一个差分方程,数一多了一个欧拉方程。它不是我们的考查重点,大家只需要了解它的一般解法就可以了。数一和数三的还有无穷级数,我们主要把精力放在两方面:一是常数项级数敛散性的判定,要知道一般的解题思路。二是对于幂级数的收敛域、幂级数的收敛区间、幂级数求和与展开。

  《2013年考研大纲解析及复习指导》专题的相关链接【点击进入
 

2023年考研数学大纲:与往年难度保持一致