大家好,关于高等代数抽象在哪里很多朋友都还不太明白,今天小编就来为大家分享关于高等代数和抽象代数的知识,希望对各位有所帮助!
一、代数学发展的4个阶段:算术、初等代数、高等代数、抽象代数
1、算术一般就是指自然数、正分数的四则运算,同时作为现代小学课程内容,主要通过计数、度量而引入一些简单的应用题。算术的主体内容虽然难度不大,却是数学中最古老的一个分支,经过长达数千年的时间,逐渐地积累起来的,并作为经验不断凝固在人们的意识中。自然数是在为满足生产、生活中的计算和计数需求,而产生的抽象概念。除了计数需求,还要计算包括长度、重量和时间在内的各种量,因此进一步出现分数。现代初等算术运算方法的发展,起源于10世纪或11世纪的印度;经阿拉伯人传到欧洲。15世纪,被改造成现在的形式。19世纪中叶,格拉斯曼首次成功地挑选出一个定义加法与乘法运算的基本公理体系;而算术的其它命题,可以作为逻辑的结果,从该体系中得到推导。后来,皮亚诺进一步完善了格拉斯曼的体系。算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性,构成了数学其它分支的最坚实的基础。
2、初等代数是古老算术的演变、推广和发展。在古代,当算术积累了丰富的数量问题的解法后,为寻求更系统的、更普遍的方法,以解决各种数量关系问题,产生了方程的求解为中心问题的初等代数。以至于长期以来,数学家们把代数学理解成方程的科学,并把主要精力集中在方程的研究上。即研究数字和文字的代数运算理论和方法,更确切的说,是研究多项式的代数运算理论和方法,其研究方法是计算性的。
3、讨论方程,首先是如何把实际中的数量关系表达为代数式,根据等量关系列出方程。其中代数式包括整式、分式和根式这三大类。代数式可以进行加、减、乘、除四则运算,以及乘方和开方,服从基本运算定律。
4、解方程问题的发展过程中,数系得到了扩充。算术中讨论的整数和分数的概念扩充到有理数的范围,因此初等代数能解决更多的问题。但仍然存在一些方程在有理数范围内无解。于是,数的概念再一次扩充到实数,进而又进一步扩充到复数。
5、那么复数范围内还会存在方程无解吗,复数还需要进行扩展吗?NO!代数学一个著名的定理——代数基本定理表明:n次方程有n个根。1742年12月15日,欧拉在一封信中明确地陈述了代数基本定理,德国的数学王子高斯在1799年给出了严格的证明。
6、综合上面的叙述,组成初等代数的基本内容就是:
7、有上述基本内容可以看出,初等代数内容的学习设置于现代中学课程中,作为算术的继续和推广,主要的问题就是代数式的有限次数的代数运算,以及产生的方程求解。
8、初等代数学向两个方向进一步发展:未知数更多的一次方程组;未知数次数更高的高次方程。在这两个方向上的发展,使得代数学发展到高等代数的阶段。高等代数作为代数学发展到高级阶段的总称,包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数和多项式代数。
9、高等代数的研究对象,在初等代数的基础上进一步扩充,引入了包括集合、向量、向量空间、矩阵、行列式等在内的新概念。这些新概念具有和数相类似的运算特点,但其研究的方法和运算的方法更加抽象和复杂,新对象的运算,并不总是符号数的基本运算定律。于是代数学纳入了包括群论、环论、域论在内的代数系统,其中群论是研究数学和物理现象的对称性规律的有力工具,也成为现代数学中最具概括性的重要的数学概念,广泛应用于其他部门。
10、多项式可视为一类简单的函数,其应用非常广泛。多项式理论的中心问题是,代数方程根的计算和分布,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,寻找解方程的方法。
11、多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。其中整除性质对于解代数方程是很有用的。解代数方程对应多项式的零点问题,零点不存在,所对应的代数方程无解。
12、在线性代数中最重要的概念是:行列式和矩阵。行列式的概念最早由日本数学家关孝和在1683年的著作《解伏题之法》中提出,并给予较详细的叙述。欧洲第一个提出行列式概念的是莱布尼茨。1841年,德国数学家雅可比总结并提出了行列式的系统理论。
13、行列式具有一定的计算规则,它可以作为解线性方程组的工具,把一个线性方程组的解表示成公式,这也意味着行列式是一个数,或一种运算。
14、由于行列式有着相同的行数和列数,排成的表是正方形的,基于行列式的研究进而发现了矩阵的理论。同是由数排成行和列的数表,矩阵是一个数组,且行数和列数不要求相等。利用矩阵,可以把线性方程组中的系数组成向量空间中的向量;基于矩阵理论,多元线性方程组的解的结构问题,得到彻底解决。除此之外,矩阵在力学、物理、科技等方面得到广泛的应用。
15、抽象代数也被称为近世代数,创始人之一是被誉为天才数学家的伽罗华。伽罗华通过研究代数方程存在根式解所满足的条件,给出了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题,并提出的“Galois域”、“Galois群”和“Galois理论”都是近世代数所研究的最重要的课题。Galois群理论被公认为19世纪最杰出的数学成就之一。Galois群论还给出了几何图形能否用尺规作图的一般判别法,圆满解决了三等分任意角、倍立方体的问题。更重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。
16、 1843年,哈密尔顿发明了不满足乘法交换律的“四元数”。第二年,格拉斯曼推演出更具一般性的几类代数。1857年,凯莱设计出另一种不可交换的矩阵代数。这些研究打开了抽象代数的大门。事实上,减弱或删去普通代数的某些假定,或将某些假定与其他可兼容的假定代替,就能得到许多种代数体系。
17、抽象代数的研究对象是各种抽象的、公理化代数系统。由于代数可处理实数、复数以外的向量、矩阵、变换等对象,并分别依赖它们各有的演算定律,而数学家将它们共有的内容升华抽象出来,达到更高层次的抽象代数,使之成为当代大部分数学的通用语言。抽象代数自身包含有群、环、Galois理论、格论等许多分支,并与数学其它分支交叉而产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。
二、高等数学和线性代数的区别在哪里
线性代数:高等代数内容的一重要部分,并且线性代数重点是掌握矩阵这一块,计算居多,是非数学系的理工科生学的。
高等代数:掌握的东西多一些,内容上增加多项式和双线性函数、酉空间、辛空间等抽象内容。
线性代数:研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;
高等代数:主要以证明为主,属于数学系学生所学。高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点。
线性代数:线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
高等代数:电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。
三、抽象代数和高等代数哪个难
1、高等代数只是代数入门的课程,几乎没有技术难度,而且只讨论有限维空间,讨论的对象,都是看得见摸得着的,还谈不上抽象。
2、抽象代数是研究各种抽象的公理化代数系统的数学学科。是现代数学理论三大支柱之一,抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响。
四、抽象代数与高等代数的联系
1、二者并没有必然的联系,当然某种程度上高等代数可以认为线性代数是到抽象代数之间的过渡。
2、高等代数:线性代数的加强版,是线性代数到抽象代数之间的过渡(在大学课程设置里,线代和高代算是一门课的难度不同的版本)。和线性代数相比,更加注重证明和对线性空间等概念的理解。内容开始从具体变得抽象,比如丘维生那本高代会讲一些多项式环的内容,慢慢往抽象代数过渡。
3、抽象代数(近世代数):主要讲各种代数结构(群/环/域/格),内容高度抽象,学的就是概念和结构,基本上是定理和证明堆起来的,几乎没有计算。在密码学中非常重要,在程序语言设计和编译系统设计中稍有应用。
五、抽象代数和高等代数区别
二者区别在于研究对象、方法和难度。
1、研究对象:抽象代数主要研究的是代数学中最抽象的理论,如群、环、域等,以及其之间的运算规则和性质。而高等代数则更注重线性代数和多项式理论等的应用,如线性变换、矩阵、二次型等。
2、方法:抽象代数的方法更加抽象和理论化,通过定义和证明来研究代数的性质和结构,需要较强的逻辑推理能力。而高等代数的方法更加具体和计算化,通过具体的计算和问题来解决实际问题,需要较强的计算能力。
3、难度:抽象代数的难度较高,需要较强的数学基础和抽象思维能力,学习起来也相对较难。而高等代数的难度相对较低,是线性代数和多项式理论的入门课程,学习起来相对容易一些。
高等代数抽象在哪里的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高等代数和抽象代数、高等代数抽象在哪里的信息别忘了在本站进行查找哦。
未经允许不得转载:考研辅导班 » 高等代数抽象在哪里,高等代数和抽象代数