高分子材料考研()

高分子材料考研,

第一章 高分子的链结构

1.1 高分子结构的特点和内容

高聚物结构的特点:

1. 是由多价原子彼此以主价键结合而成的长链状分子,相对分子质量大,相对分子质量往往存着分布。

2. 一般高分子主链都有一定的内旋转自由度,可以使主链弯曲而具有柔性。

3.晶态有序性较差,但非晶态却具有一定的有序性。

4.要使高聚物加工成有用的材料,往往需要在其中加入填料,各种助剂,色料等.。

5. 凝聚态结构的复杂性: 结构单元间的相互作用对其聚集态结构和物理性能有着十分重要的影响。

1.2 高分子的近程结构

编辑

添加图片注释,不超过 140 字(可选)

链结构:指单个分子的结构和形态.

链段:指由高分子链中划出来的可以任意取向的最小链单元.

近程结构:指链结构单元的化学组成,键接方式,空间方式,空间立构,支化和交联,序列结构等问题.

共聚物:由两种以上单体所组成的聚合物.

有规立构聚合物:指其化学结构单元至少含有一个带有两个不同取代原子或基团的主链碳原子,并且沿整个分子链环绕这种碳原子是有规律的.

全同立构:高分子全部由一种旋光异构单元键接而成.

间同立构:由两种旋光异构单元交替键接.

无规立构:两种旋光异构单元完全无规则键接时.

等规度:高聚物中含有全同立构和间同立构的总的百分数.

临界聚合度:聚合物的分子量或聚合度一定要达到某一数值后,才能显示出适用的机械强度,这一数值称为~.

键接结构:是指结构单元在高分子链中的连接方式.

支化度:以支化点密度或相邻支化点之间的链的平均分子量来表示运货的程度.

交联结构:高分子链之间通过支链联结成一个三维空间网型大分子时即成为交联结构.

交联度:通常用相邻两个交联点之间的链的平均分子量Mc来表示.

交联点密度:为交联的结构单元占总结构单元的分数,即每一结构单元的交联几率.

1.3 高分子的远程结构

构造: 是指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等.

构象:由于单键内旋转而产生的分子在空间的不同形态称为~

构型: 是指某一原子的取代基在空间的排列.

遥爪高分子:是端基具有特定反应性技的聚合物.

聚集态结构:是指高分子材料整体的内部结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构以及织态结构.

无规线团:不规则地蜷曲的高分子链的构象称为~.

自由联结链:假定分子是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中生个键在任何方向取向的几率都相等.

自由旋转链:假定分子链中每一个键都可以在键角所允许的方向自由转动,不考虑空间位阻对转动的影响.

末端距:指线型高分子链的一端至另一端的直线距离,用h表示.

均方末端距:求平均末端距或末端距的平方的平增色值.

(n为键数)

自由结合链:假定分子是由不占有体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中每个键在任何方向取向的几率都相等.

自由旋转链:假定分子链中每一个键都可以在键角所允许的方向自由转动,不考虑空间位阻对转动的影响.

均方旋转半径:假定高分子链中包含许多个链单元,每个链单元的质量都是m,设从高分子链的重心到第i个链单元的距离为Si,它是一个向量,则全部链单元的Si2的重量均方根就是链的旋转半径S,其平均值为:

远程相互作用:指沿柔性链相距较远的原子或原子基团由于主链单键的内旋转而接近到小于范德华半径距离时所产生的推斥力.

体积效应:实际链段总是有一定体积的,任何两个链段不可能同时占有同一空间.

持久长度a:无限长链的末端距在链初始(即第一键)方向上的平均投影.其值越大,链的刚性越强.

蠕虫状链模型:把模型链分成很小的单元,以使链上任何一点的取向相对相邻的点几乎呈连续变化,链轮廓上任一点的曲率方向假定是无规的,这样的模型链就好似一条弯曲的蠕虫.

1.4 高分子链的柔顺性

柔顺性:高分子链能够改变其构象的性质称为~.

高分子链的柔顺性主要取决于以下因素:

1. 主链中含有共轭双键、芳杂环结构的高分子链的柔顺性较差.

2. 侧基的极性越强,相互间的作用力越大,其~越差.侧基体积越大,空间位阻越大,对链的内旋转愈不利,使链的刚性增加.

3. 分子链越长,~越大.

平衡态柔性:又称热力学柔性)指在热力学平衡条件下的柔性.

动态柔性:指在外界条件的影响下从一种平衡态构象向另一种平衡态构象转变的难易程度.

第二章 高分子的聚集态结构

2.1 高聚物的非晶态

内聚能:定义为克服分子间的作用力,把一摩尔液体或固体分子移到其分子间的引力范围这外所需要的能量.

内聚能密度(CED):是单位体积的内聚能. 内聚能密度小290兆焦/米3的高聚物,都是非极性高聚物,由于它们的分子链上不含有极性基团,分子间力主要是色散力,分子间相互作用较弱,加上分子链的柔顺性较好,使这些高聚物材料易于变形,富有弹性,可用作橡胶。内聚能密度大于420兆焦/米3的高聚物,由于分子链上有强极性基团,或者分子链间能形成氢键,分子间作用力大,因而有较好的机械强度和耐热性,再加上分子链结构比较规整,易于结晶,取向,使强度更高,成为优良的纤维材料。在两者这间的,适合做塑料使用.

2.2 高聚物的晶态

单晶:通常只有在特殊的条件下得到,一般是在极稀的溶液中(浓度约0.01%~0.1%)缓慢结晶时生成的. 一般结晶的温度必须足够高,或者过冷程度(即结晶熔点与结晶温度之差)要小,使结晶速度足够慢. 采用热力学上的不良溶剂有利于生长较大的更为完善的晶体. 在单晶内,分子链作高度规则的三维有序排列,分子链的取向与片状单晶的表面相垂直.

球晶:是高聚物结晶中的一种最常见的特征形式. 其呈现特有的黑十字消光图像—是高聚物球晶的双折射性质和对称性的反映. 分子链总是与球晶的半径相垂直的. 其生成的共同条件是含有杂质的粘稠体系.

串晶:高聚物通常情况下不管从溶液还是从熔体冷却结晶,都倾向于生成具有折叠链片晶结构的晶体,但在应力作用下结晶,则往往生成一长串像串珠式的晶体,称为高聚物串晶.这种高聚物串晶具有伸直链结构的中心线,中心线周围间隔地生长着折叠链的晶片,所以它是同时具有伸直链的折叠链两种结构单元组成的多晶体.

树枝状晶:从溶液析出结晶时,当结晶温度较低,或溶液的浓度较大,或分子量过大时,高聚物不再形成单晶,结晶的过度生长将导致复杂的结晶形式.在此条件下,高分子的扩散成了结晶生长的控制因素,这时,突出的棱角在几何学上将比生长面上邻近的其它点更为有利,能从更大的立体角接受结晶分子,因此棱角倾向于在其余晶粒前头向前生长变细变尖,从而更增加树枝状生长的倾向,最后形成树枝状晶.

伸直链片晶:是一种由完全伸展的分子链平行规整排列而成的片状晶体,其晶片厚度比一般从溶液或熔体结晶得到的晶片要大得多, 其厚度不再随一般的热处理条件而改变,熔点高于其它结晶形态,接近厚度趋于无穷大时的熔点,因而被认为是热力学上最稳定的一种高聚物聚集态结构.

同质多晶现象:由于结晶条件的变化,引起分子链构象的变化或者链堆积方式的改变,则一种高聚物可以形成几种不同的晶型.

缨状微束模型(两相模型):在20世纪40年代提出,模型从结晶高聚物X射线圈上衍射花样和弥射环同时出现以及测得晶区尺寸远小于分子链长度等主要实验事实出以,认为结晶高聚物是由结晶部分和非晶部分组成的,结晶部分呈现为很多个小的晶体,每个高分子链可以通过若干个小晶体和非晶区,在晶体中分子链是相互平行排列的,在非晶区分子链是无序的,小晶体本身也是无规取向地分散在非晶区中。

折叠链模型:认为伸展的分子链倾向于相互聚集在一起形成链束,电镜下观察到这种链束比分子链长得多,说明它是由许多分子链组成的.分子链可以顺序排列,让末端处在不同的位置上,当分子链结构很规整而链束足够长时,链束的性质就和高聚物的分子量及其多分散性无关了,分子链规整排列的链束,构成高聚物结晶的基本结构单元,这种规整的结晶链束细而长,表面能很大,不稳定,会自发地折叠成带状结构,虽然折叠部位的规整排列被破坏,但是“带”具有较小的表面,节省了表面能,在热力学上仍然是有利的。进一步减少表面能,结晶链束应在已形成的晶核表面上折叠生长,最终形成规则的单层片晶。

插线板模型:Flory从他的高分子无规线团形态的概念出以,认为高聚物结晶时,分子链作近邻规整折叠的可能性是很小的,因此在片晶中,相邻排列的两段分子链并不像折叠甸模型那样,是同一个分子的相连接的链段,而是非邻接的链段和属于不同分子的链段。在形成多层片晶时,一根分子链可以从一个晶片,通过非晶区,进入到另一个晶片中去,如果它再回到前面的晶片中来的话,也不是邻接的再进入。为此,仅就一层晶片来说,其中分子链的排列方式与老式电话交换台的插线板相似。

折叠链缨状胶束粒子模型(两相球粒模型)–非晶态模型:认为非晶态高聚物存在着一定程度的局部有序,其中包括粒子相和粒间相两个部分,而粒子又可分为有序区和粒界区两个部分,在有序区中,分子链是互相平行排列的,其有序程度与链结构,分子间力和热历史等因素有关。解释了以下事实:

1.模型包含了一个无序的粒间相,从而能为橡胶弹性变形的回缩力提供必要的构象熵,因而可以解释橡胶弹性的回缩力;

2.有序的粒子相与无序的粒间相并存,两相中由于链段的堆砌情况有差别,导致了密度的差别,粒子相中的链呈有序堆砌,其密度应较接近ρc,而总的密度自然就偏高.

3.可解释许多高聚物结晶速度很快的事实.

4.某些非晶态高聚物缓慢冷却或热处理后密度增加,电镜下还观察到球粒增大,这可以用粒子相有序程度的增加和粒子相的扩大来解释.

无规线团模型(非晶态模型):Flory认为,非晶态高聚物的本体中,分子链的构象与在溶液中一样,呈无规线团状,线团分子之间是无规缠结的,因而非晶态高聚物在聚集态结构上是均相的.

高分子结晶能力:高分子结晶能力差别的根本原因是不同高分子具有不同的结构特征,这些结构特征中能不能和容易不容易规整排列形成高度有序的晶格是关键:1. 高分子链的结构对称性越高,越容易结晶; 2.高分子链的规整性越高,越容易结晶; 3.无规共聚、支化通常会破坏链的对称性和规整性,从而使结晶能力降低; 4. 链的柔顺性不好,将在一定程度上降低高聚物的结晶能力; 5.交联大大限制了链的活动性,使结晶能力降低.

均相成核:是由熔体中的高分子链段靠热运动形成有序排列的链束为晶核.有时间依赖性.

异相成核:是以外来的杂质、未完全熔融的残余结晶聚合物、分散的小颗粒固体或容器的壁为中心,吸附熔体中的高分子链作有序排列而形成晶核.与时间无关.

结晶速度:高聚物本体结晶速度-温度曲线都呈单峰形,结晶温度范围都在其Tg与熔点之间,在某一适当温度下,结晶速度将出现极大值,这是因为在熔点以上晶体将被熔融,而在玻璃化温度以下,链段将被冻结. Tmax=0.63Tm+0.37Tg-18.5 ;从熔点出发对Tmax=(0.80—0.85)Tm分子结构的差别是决定不同高聚物结晶速度快慢的根本原因.链的结构愈简单,对称性愈高,链的立构规整性愈好,取代基的空间位阻越小,链的柔顺性越大,则结晶速度越大.一般在相同结晶条件下,分子量低时,结晶速度大.

结晶度:作为结晶部分含量的量度,通常以重量百分数或体积百分数来表示: ;,W表质量,V表体积,c表结晶,a表非晶.表晶(非晶)区的比容.

结晶对高聚物性能的影响: 1.力学性能结晶一般使塑料变脆(冲击强度下降),但使橡胶的抗张强度提高.在Tg以下,结晶度对脆性的影响较大,当结晶度增加,分子链排列趋紧密,孔隙率下降,材料受到冲击后,分子链段没有活动的余地,冲击强度降低,在Tg以上,结晶度的增加使分子间的作用力增加,因而抗张强度提高,但断裂伸长减小,在Tg以下,高聚物随结晶度增加而变得很脆,抗张强度下降,另外,微晶体可以起物理交联作用,使链的滑移减小,因而纬度度增加可以使蠕变和应力松弛降低. 2.随着结晶度的增加,高聚物的密度增大,3.光学性能:当结晶度减小时,高聚物的透明度增加, 因为晶区与非晶区的界面会发生光散射. 4.热性能:结晶使塑料的使用温度从Tg提高到Tm. 5.结晶使高聚物的耐溶剂性、渗透性等得到提高,因为结晶分子排列紧密.

熔限:结晶高聚物的熔融过程与低分子相似,也发生某些热力学函数(如体积、比热等)的突变,然而这一过程并不像低分子那样发生在约0.2℃左右的狭窄温度范围内,而有一人较宽的熔融温度范围,这个温度范围通常称为熔限.在这个温度范围内,发生边熔融边升温的现象,而不像低分子那样,几乎保持在某一两相平衡的的温度下,直到晶相全部熔融为止.结晶高聚物的熔化过程是热学的一级相转变过程,与低分子晶体的熔化现象只有程度的差别,而没有本质的不同.结晶高聚物熔融时出现边熔融、边升温的现象是由于结晶高聚物中含有完善程度不同的晶体的缘故.结晶时,随着温度降低,熔体的粘度迅速增加,分子链活动性减小,来不及作充分的位置调整,使得结晶停留在不同的阶段上,比较不完善的晶体将在较低的温度下熔融,而比较完善的晶体则需要在较高的温度下熔融,因而在通常的升温速度下,便出现较宽的熔融温度范围.

一般,结晶的熔点随着晶片厚度的增加而增加.晶片厚度越小,单位体积内的结晶物质比完善的单晶将具有较高的表面能. Tm,Tm0表晶片厚度为l和∞时的结晶熔点,表单位体积的熔融热,为表面能.

2.3 高聚物的取向结构

高聚物取向结构:是指在某种外力作用下,分子链或其它结构单元沿着外力作用方向择优排列的结构.

取向:由于结构上悬殊的不对称性,使高聚物在某些情况下很容易沿某特定方向作占优势的平等排列.这就是~.取向态是一维或二维在一定程度上的有序,而结晶态则是三维有序的.取向后,材料的抗张强度和挠曲疲劳强度在取向方向上显著地增加,而与取向相垂直的方向上则降低。取向高分子材料上发生了光的双折射现象。取向通常还使材料的Tg升高,对结晶性高聚物,则密度和结晶度也会升高,因而提高了高分子材料的使用温度.非晶态高聚物有两类取向. 1.链段取向可以通过单键的内旋转造成的链段运动来完成,这种取向过程在高弹态下就可以进行; 2.整个分子的取向需要高分子各链段的协同运动才能实现,这就只有当高聚物处于粘流态下才能进行.一般,在外力的作用下,先发生链段的取向,然后才是整个分子的取向.

取向的应用:1.迁维的牵伸和热处理(一维材料):牵伸使分子取向,大幅度提高纤维强度,热定型(或热处理)使部分链段解取向,使纤维获得弹性. 2.薄膜的单轴或双轴取向(二维取向):单轴拉伸极大提高了一个方向的强度,常用作包装带,双轴拉伸使薄膜平面上两个方向的强度均提高. 3. 塑料成型中的取向效应(三维材料):取向虽然提高了制品强度,但取向结构的冻结形成的残存内应力是有害的,故对塑料制品,不要求有高的取向度,而是要求有良好的取向能力.

取向度:一般用取向函数F来表示 为分子链主轴与取向方向间的夹角。对于理想单轴取向,=0,=1,f=1,对于无规取向,=1/3,f=0,一般情况下,1>f>0

测定方法有:1.热传导法,测定的是晶区中的小结构单元的取向;2.双折射法,测定的是晶区与非晶区中链段的取向;3.X射线衍射法,测定的是晶区晶胞的取向;4.声速法,测定的是晶区与非晶区中分子的取向.

2.4 高分子液晶及高分子合金

液晶态:某些物质的结晶受热熔融或被溶剂溶解之后,虽然失去固态物质的刚性,而获得液态物质的流动性,却仍然部分地保存着晶态物质分子的有序排列,从而在物理性质上呈现各向异性,形成一种兼有晶体和液体的部分性质的过渡状态,这种中间状态称为~.处在此状态下的物质称为液晶.靠升高温度,在某一温度范围内形成液晶态的物质,称为热致型液晶.靠溶剂溶解分散,在一定浓度范围成为液晶态的物质称为溶致型液晶.

刚性高分子形成溶致性溶晶体系的一般规律:在低浓度范围内,粘度随浓度增大急剧上升,出现一个粘度极大值,随后粘度随浓度增大反而降低.当浓度增大到使溶液为均一的各向异性状态时,粘度又随浓度的变化形式是~.

高分子合金:不同的高聚物共混以后,也可以使材料得到单一的高聚物所不具有的性能.通过共混可以改性某种高分子材料,也可以使材料具有优良的综合性能,这类高聚物共混体系就是~.

互穿聚合物网(IPN):用化学方法将两种或两种以上的聚合物互穿成交织网络.

第三章 高聚物的分子运动

3.1 高聚物的分子热运动

1. 高分子热运动的特点

1. 运动单元的多重性。除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动).

2. 运动时间的依赖性。高分子热运动是一个松驰过程。在外场作用下物体从一种平衡状态通过分子运动过渡到另一种平衡状态是需要时间的,这个时间称为松弛时间,记作.

当t=时,

式中是外力未除去时塑料丝增加的长度,(t)是外力除去后,在t时间内测出塑料丝增加的长度,为常数。

因而松驰时间定义为: 变到等于的时所需要的时间.它反映某运动单元松弛过程的快慢.由于高分子运动单元有大有小, 不是单一值而是一个分布,称为”松弛时间谱”.

3. 分子运动的温度依赖性. 温度对高分子的热运动有两方面的作用:①使运动单元活化。②温度升高使高聚物发生体积膨胀。升高温度加快分子运动,缩短松驰时间,即有

式中为活化能, 为常数.

如果高聚物体系的温度较低,运动单元的松驰时间就较长,因而在较短时间内将观察不到松驰现象;但是如果温度升高,缩短了运动单元的松驰时间,就能在较短的时间内观察到松驰现象。

2. 高聚物的力学状态和热转变

在一定的力学负荷下,高分子材料的形变量与温度的关系式称为高聚物的温度-形变曲线(或称热机械曲线)

①线型非晶态高聚物的温度-形变曲线.

线形非晶态聚合物的形变-温度曲线

玻璃态:链段运动被冻结,此时只有较小的运动单元如链节、侧基等的运动,以及键长键角的变化,因而此时的力学性质与小分子玻璃差不多,受力后变形很小(0.01%~0.1%),且遵循胡克定律,外力除后立即恢复.这种形变称为普弹形变.

玻璃态转变:在3~5℃范围内几乎所有的物理性质都发生突变,链段此时开始运动,这个转变温度t称为玻璃态转变温度(Tg).

高弹态:链段运动但整个分子链不产生移动.此时受较小的力就可发生很大的形变(100%~1000%),外力除去后可完全恢复,称为高弹形变.高弹态是高分子所特有的力学状态.

流动温度:链段沿作用力方向的协同运动导致大分子的重心发生相对位移,聚合物呈现流动性,转变温度称为流动温度(Tf).

粘流态:与小分子液体的流动相似,聚合物呈现粘性液体状,流动产生了不可逆变形.

②交联高聚物的温度-形变曲线 交联度较小时,存在Tg, 但Tf随交联度增加而逐渐消失.交联度较高时, Tg和Tf都不存在.

③晶态聚合物的温度-形变曲线. 一般相对分子质量的晶态聚合物只有一个转变,即结晶的熔融,转变温度为熔点Tm.当结晶度不高(Xc<40%)时,能观察到非晶态部分的玻璃化转变,即有Tg和Tm两个转变.相对分子质量很大的晶态高聚物达到Tm后,先进入高弹态,在升温到Tg后才会进入粘流态,于是有两个转变.

④增塑聚合物的温度-形变曲线 加入增塑剂一般使聚合物的Tg和Tf都降低,但对柔性链和刚性链,作用有所不同.对柔性链聚合物, Tg降低不多而Tf降低较多,高弹区缩小;对刚性链聚合物, Tg和Tf都显著降低,在增塑剂达到一定浓度时,由于增塑剂分子与高分子基团间的相互作用,使刚性链变为柔性链,此时Tg显著降低而Tf降低不大,即扩大了高弹区,称”增弹作用”,这点对生产上极为有用(如PVC增塑后可作为弹性体用).

3. 高聚物的松驰转变及其分子机理

在Tg以下,链段是不能运动了,但较小的运动单元仍可运动,这些小运动单体从冻结到运动的变化过程也是松弛过程,称为次级松弛。非晶聚合物的主松弛即α松弛在Tg,晶态聚合物的主松弛即α松弛在熔融Tm,往下次级松弛按出现顺序依次叫松弛, 松弛, 松弛….次级松弛的机理对不同聚合物可能完全不同,其中β松弛最为重要。它与玻璃态聚合物的韧性相关。当Tβ明显低于室温,且δ松弛的运动单元在主链上时(在侧基上不行),材料在室温时是韧性的,相反,材料为脆性的.大多数工程塑料都是韧性的。某些线形聚合物当其主链中包含有四个以上基团时,会地-120~-75出温度范围内出现松驰转变,和般叫做松驰。这可由所谓的曲柄运动为解释——当两端的两个单键落在同一直线上时,处在它们中间的碳原子能够以这一直线为轴转动而不扰动沿链的其它原子。主链旁较大的侧基,如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中的酯侧基的内旋转都能产生松弛。

晶区引起的松驰转变对就的分子运动可能有:

①晶区的链段运动。②晶型转变。③晶区中分子链沿晶粒长度方向的协同运动,这种松驰与晶片的厚度有关。④晶区内部侧基或链端的运动,缺陷区的局部运动,以及分子链折叠部分的运动等。

3.2 玻璃化转变

Tg是链段(对应于50~100个主链原子)运动开始发生(或冻结)的温度.对于塑料来说, Tg是使用的最高温度即耐热性指标;对于橡胶来说, Tg是使用的最低温度,是其耐寒性指标。

解释玻璃化转变的理论如下:

1)Gibbs-Dimarzio为代表的热力学理论(G-D理论). 其结论是: Tg不是热力学二级转变温度,但的确存在一个二级转变温度T2,在这个温度下聚合物的构象熵等于零,可以预计T2比Tg低50℃左右.由于Tg是力学状态的转变点,不是热力学相变温度,因而不同测定方法或同一方法不同条件得到的Tg数值有相当大的差别.

2)Fox-Flory为代表的自由体积理论. 聚合物链堆砌是松散的,存在一部分空隙,称为自由体积,可以认为是比容和分子实际占有空间之差。Tg以上时自由体积较大,链段能够通过向自由体积转动或位移而改变构象.当温度降至临界温度Tg时,自由体积达到最低值,并被冻结,再降低也保持恒定值.实验发现所有聚合物在Tg以下时自由体积分数fg都接近于2.5%,这就是所谓的”等自由体积”.玻璃化温度以上某温度T时的聚合物的自由体积分数的表达式为

分别是玻璃化转变后(橡胶态)和前(玻璃态)聚合物的自由体积膨胀系数.对于许多聚合物, , 自由体积理论更多用于解释现象.

WLF方程:

,分别为温度T和时高聚物的粘度。

3)Aklonis-Kovacs为代表的动力学理论. 玻璃化转变具有明确的动力学性质, Tg与实验的时间尺度(如升温速度、测定频率等)有关.动力学理论提出了有序参数并据此建立了体积与松弛时间的联系.

3.3 玻璃化转变与链结构的关系

玻璃化温度是高分子的链段从冻结到运动(或反之)的一个转变温度,而链段运动是通过主链的单键内旋转来实现的,因此,凡是能影响高分子链柔性的因素,都对有影响。减弱高分子链柔性或增加分子间作用力的因素,都使升高,而增加高分子链柔性的因素,都使降低。

1. 化学结构。

柔顺性是影响的最重要的因素,链的柔顺性越好, 越低。

(1)主链结构 当主链中引入苯基等芳杂环以后,分子链的刚性增大,因此有利于玻璃化温度的提高。当主链中含有孤立双键的高分子链都比较柔顺,所以较低。

(2)取代基团的空间位阻和侧链的柔性 取代基的体积增大,分子链内旋转位阻增加,将升高。有双取代基的高聚物,对称性会降低,另外长面柔的侧基会降低,侧基柔性的增加远足以补偿由侧基增大所产生的升高的影响。这些柔性侧基推开相邻的分子链,因而使分子链段易于运动,这同增塑剂的作用类似,也可称之为“内增塑”。

(3)分子间力的影响 侧基的极性,分子间氢键可使显著升高。

2 增塑. 增塑剂溶于高聚物中,有效降低了高聚物的从而产生软化作用,使高聚物在室温时呈现高弹态成为软制品,并在较低的使用温度下保持良好的性能。

对于非极性体系,可用下列经验式估算增塑聚合物的Tg

为体积分数;下标p和d分别指聚合物和增塑剂.

较准确的估算用下式(Gordon-Taylor)方程.

为Tg前后膨胀系数之差,当K=1时此式还原成上一式.

3 共聚(这里又称内增塑). 无规共聚物的Tg介于两种均聚物(A和B)的Tg之间,可用下式(也称Gordon-Taylor)估算.

,分别为组分A和B的特征常数,,,分别为组分A和B的质量分数。此式推导中已假定了两组分的密度相等,所以用质量分数W代替了体积分数.共混物根据相容性的好坏而不同,相容性好的得到一个Tg,部分相容体系得到两个Tg,分别接近于纯组分的Tg,1和Tg,2.

4 适度交联. 交联妨碍链段运动,适度交联可提高Tg,进一步交联,形成网状高分子,则不存在Tg.

式中分别为已交联和未交联高分子的Tg; Kx为常数; 为交联密度(单位体积的交联点数)

5 结晶. 对于半结晶聚合物的精细测定可区分出两个,较低的是纯非晶部分产生的,较高的是受邻近晶体限制的非晶部分产生的,后者随结晶度增大而升高.

6 相对分子质量. 分子量的增加使增加,特别是当分子量较低时,这种影响更为明显。相对分子质量对的影响主要是链端的影响,处于链末端的链段比链中间的链段受的牵制要小些,所以运动比较剧烈。链端浓度与数均相对分子质量成反比,因而与有线性关系:

存在临界相对分子质量,超过它后链端比例可以忽略, 与关系不大,此时的玻璃化转变温度记为.

7. 增塑剂或稀释剂. 玻璃化温度较高的聚合物,在加入增塑剂以后,可以使明显下降。

通常,共聚作用在降低熔点的效应比增塑作用更为有效,而增塑作用在降低玻璃化温度的效应比共聚效应更为有效。

7 测定条件的影响. 张力促进链段运动,使下降;压力减少自由体积,使上升.外力作用频率太快或升温速度太快,链段运动来不及响应,都会使测得的偏高.

玻璃化转变的多维性:一般情况是在固定压力、频率等条件下改变温度得到.其实只不过是玻璃化转变的一个指标,如果保持温度不变,而改变其他因素,也能观察到玻璃化转变现象,如玻璃化转变频率、玻璃化转变压力和玻璃化转变相对分子质量等.

提高高分子材料耐热性的途径归纳起来有以下三条:

(1) 增加链刚性.引入环状结构,苯大侧基或大共轭键结构.

(2) 增加分子间作用力.引入强极性基团,能形成氢键的基团或交联等.

(3) 结晶. 或加入填充剂、增强剂等,起到类似结晶的物理交联作用.

这三条也是Mark提出的三角形关系的三个角.同时具有两条或三条,效果会更好.

3.4晶态高聚物的分子运动

1. 晶区的主转变是结晶的熔融。其温度为熔占,由晶态变为熔融态,发生相变,属整链的运动。

凡增加高聚物的分子间相互作用或分子内相互作用均将使熔点升高;凡增加高分子链柔性的因素(从而使变大)都将使熔占降低。

对于绝大多数高聚物的比值满足:

2. 在温度下,发生晶型转变。

3. 双重玻璃化温度。在晶态高聚物中会由于链段运动是否受晶区影响而呈现有两个玻璃化温度,一个较高,是由受到晶区束缚的非晶区发生的,另一个较低,是由不受或不太受晶区束缚的非晶区内发生的转变。这种双重玻璃化温度现象是表观的,与两种高聚物共混后所显示的真正双重不同。

4. 晶区内部的运动。

第四章 高聚物的力学性质

高聚物力学性质的最大特点是高弹性和粘弹性。高分子链柔性在性能上的表现就是高聚物所独有的高弹性。高聚物的粘弹性是指高聚物材料不但具有弹性材料的一般特点,同时还具有粘性流体的一些特性。

4.1 玻璃态和结晶态高聚物的力学性质

1 力学性质的基本物理量.

当材料在外力作用下,材料的几何形状和尺寸就要发生变化,这种变化称为应变(stain).此时材料内部发生相对位移,产生了附加的内力抵抗外力,在达到平衡时,附加内力和外力大小相等,方向相反.定义单位面积上的附加内力为应力(stress).有三种基本的受力-变形方式.

弹性模量:对于理想的弹性固体,应力与应变关系服从虎克定律,即应力与应变成正比,比例常数称为~。

(a)简单拉伸.

拉伸应变:在简单拉伸的情况下,材料受到的外力F是身垂直于截面积的大小相等、方向相反并作用于一直线上的两个力,这时材料的形变称为~。

当材料发生拉伸应变时,材料的应为称为拉伸应力 :

拉伸的模量称为杨氏模量 拉伸柔量是杨氏模量的倒数

(b)简单剪切:

切应变:在简单剪切情况下,材料受到的力F是截面相平行的大小相等、方向相反的两个力,在这剪切力作用下,材料将发生偏斜,偏斜角的正切定义为切应变。

切应力

切应变(当足够小时),

切变模量,切变柔量

(c)简单压缩.

围压力p,压缩应变: ,

本体模量,本体柔量(压缩率) .

有4个材料常数最为重要,它们是E、G、B和. 是泊松比:在拉伸试验中,材料横向单位宽度的减小与纵向单位长度的增加的比值,即

没有体积变化时, =0.5(例如橡胶),大多数材料体积膨胀, <0.5.

4个材料常数,已知两个就可以从下式计算另外两个.

显然E>G,也就是说拉伸比剪切困难.

三大高分子材料在模量上有很大差别,橡胶的模量较低,纤维的模量较高,塑料居中.

工程上表片材料力学性能的物理量主要有以下几种.

(1) 拉伸(抗张)强度:在规定的试验温度、湿度和试验速度下,在标准试样上沿轴向施加拉伸载荷,直到试样被拉断为止,断裂前试样承受的最大载荷P与试样的宽度b和厚度d的乘积的比值。

(2)弯曲强度:亦称挠曲强度,是在规定试验条件下,对标准试样施加静弯曲力矩,直到试样折断为止,取试验过程中的最大载荷P,并按下式计算:

弯曲模量为:

(2) 抗冲强度(或冲击强度):表征材料抵抗冲击载荷破坏的能力。通常定义为试样受冲击载荷而折断时单位截面积所吸收的能量。

试验的方法有两类:简支梁式(charpy)—试样两端支撑,摆锤冲击试样的中部; 悬臂梁式(izod)—试样一端固定,摆锤冲击自由端. Charpy试样又分两类: 带缺口和不带缺口.根据材料的室温冲击强度,可将高聚物分为脆性、缺口脆性和韧性三类.

(3) 硬度:是衡量材料表面抵抗机械压力的能力的一种指标。硬度的大小与材料的抗张强度和弹性模量有关。

(以布氏硬度为例)

以上各式中:P为负荷,b、d分别为试样的宽,厚;W为冲断试样所消耗的功;D为钢球的直径;h为压痕深度.

2 应力-应变曲线

(1)玻璃态高聚物的拉伸

典型的玻璃态高聚物单轴拉伸时的应为-应变曲线如左图。当温度很低时(),应力随应变正比地增加,最后应变不到10%就发生断裂(曲线1);当温度稍稍升高些,但仍在以下,应力-应变曲线上出现了一个转折点B,称为屈服点,应为在B点达到一个极大值,称为屈服应为。过了B点应为反而降低,试样应变增大,但由于温度仍然较低,继续拉伸,试样便发生断裂,总的应变也没有超过20%(曲线2);如果温度再升高到以下几十度的范围内时,拉伸的应力-应变曲线如曲线3所示,屈服点之后,试样在不增加外力或者外力增加不大的情况下能发生很大的应变。在后一阶段,曲线又出现较明显地上升,直到最后断裂。断裂点C的应力称为断裂应力,对应的应变称为断裂伸长率。温度升高到以上,试样进入高弹态,在不大的应力下,便可发展高弹形变,曲线不再出现屈服点,而呈现一段较长的平台,即在不明显增加应力时,应变有很大的发展,直到试样断裂前,曲线又出现急剧上升,如曲线4.

(2) 玻璃态高聚物的强迫高弹形变

玻璃态高聚物在大外力的作用下发生的大形变,其本质与橡胶的高弹形变是一样,但表现的形式却有差别,为了与普通的高弹形变区别开来,通常称为强迫高弹形变。实验证明,松驰时间与应力有如下关系:

为活化能,a为常数。

由上式可见,随着应力的增加,链段运动的松驰时间将缩短;如果温度降低,为了使链段松驰时间缩短到与拉伸速率相适应,就需要有更大的应力,即必须用更大的外力,才能使高聚物发生强迫高弹形变。但是要使强迫高弹形变能够发生,必须满足断裂应力大于屈服应力的条件。若温度太低,则,即在发生强迫高弹形变之前,试样已经被拉断了。因此并不是任何温度下都能发生强迫高弹形变的,而有一定的温度限制,即存在一个特征的温度,只要温度低于,玻璃态高聚物就不能发展强迫高弹形变,而必定发生脆性断裂,因而这个温度称为脆化温度。玻璃态高聚物只有处在到之间的温度范围内,才能在外力作用下实现强迫高弹形变,而强迫高弹形变又是塑料具有韧性的原因,因此是塑料使用的最低温度。在以下塑料显得很脆,失去了使用价值。强迫高弹态的必要条件是高聚物要具有可运动的链段,通过链段运动使链的构象改变才能表现出高弹形变。

材料的脆韧行为作如下分类:

a. 材料呈脆性

b. 材料在没有缺口的拉伸试验中是韧性的,但若有尖锐缺口就变成脆性。

c. 材料总是韧性的,包括所有存在缺口的材料。

(3) 非晶态聚合物的应力-应变曲线

以一定速率单轴拉伸非晶态聚合物,其典型曲线如左图.整个曲线可分成5个阶段:①弹性形变区,为一段直线,应力与应变成正比,试样表现出虎克弹性体的行为,在这段直线范围内停止拉伸,移去外力,试样将立刻完全回复原状。从直线的斜率可以求出杨氏模量,从分子机理来看,这一阶段的普弹性是由于高分子的键长、键角和小的运动单元的变化引起的。②屈服(yiedld,又称应变软化)点,超过了此点,冻结的链段开始运动. ③大形变区,又称为强迫高弹形变。 如果在试样断裂前停止拉伸,除去外力,试样的大形变已无法完全回复,但是如果让试样的温度升到附近,则可发现,形变又回复了。其本质上与高弹形变一样,即在外力作用下,玻璃态高聚物本来被冻结的链段开始运动,高分子链的伸展提供了材料的大形变。这时,由于高聚物处在玻璃态,即使外力除去后,也不能自发回复,而当温度升高到以上时,链段运动解冻,分子链蜷曲起,因而形迹回复。④应变硬化区,分子链取向排列,使强度提高. ⑤断裂.

应力-应变行为有以下几个重要指标:杨氏模量E—刚性(以”硬”或”软”来形容);屈服应力或断裂应力(又称抗张强度)—强度(以”强”或”弱”不形容);伸长率或功S—韧性(以”韧”或”脆”来形容).

Carswell和Nason将聚合物应为-应变曲一分为五大类型,即硬而脆、硬而强、强而韧、软而韧、软而弱.

影响应力-应变行为的因素主要有温度、外力和外力作用速率.随温度的增加,应为-应变曲线开始出现屈服点到出现屈服点之间存在一个特征温度 (称脆化温度), 是塑料的耐寒性指标。从分子机理来说,相应于链节等较小运动单元开始运动的温度。影响的因素主要是分子链的柔顺性,刚性越大,降低(因为刚性链间堆砌松散,受力时链段反而有充裕的活动空间),同时升高,因而塑料的使用温区增加。

(4)结晶态聚合物的应力-应变曲线

结晶态聚合物的典型应力-应变曲线同样经历五个阶段,不同点是第一个转折点出现”细颈化”(necking),接着发生冷拉,应力不变但应变可达500%以上。结晶态聚合物在拉伸时还伴随着结晶形态的变化.。在单向拉伸过程中分子排列产生很大的变化,尤其是接近屈服点或超过屈服点时,分子都在与拉伸方向相平行的方向上开始取向。在结晶高聚物中微晶也进行重排,甚至某些晶体可能破裂成较小的单位,然后在取向的情况下再结晶。

结晶高聚物的拉伸与玻璃态高聚物的拉伸情况有许多相似之处。现象上,两种拉伸过程都经历弹性形变、屈服(“成颈”)、发展大形变以及“应变硬化”等阶段,拉伸的后阶段材料都呈现强烈的各向异性,断裂前的大形变在室温时都不能自发回复,而加热后却都能回复原状,因而本质上两拉伸上两种拉伸过程造成的大形变都是高弹形变。通常把它们统称为“冷拉”。另一方面两种拉伸过程又是有差别的。它们可被冷拉的温度范围不同,玻璃态高聚物的冷拉温度区间是到,而结晶高聚物却在至间被冷拉,更主要的和本质的区别在于晶态高聚物的拉伸过程伴随着比玻璃态高聚物拉伸过程复杂得多的分子聚集态结构的变化,后者只发生分子链的取向,不发生相变,而前者还包含有结晶的破坏、取向和再结晶等过程。

球晶拉伸过程片晶的变形大体包括:①相转变和双晶化;②分子链的倾斜,片晶沿着分子方向滑移和转动;③片晶的破裂,更大的倾斜滑移和转动,一些分子链从结晶休中拉出;④破裂的小分子链和被拉直的链段一道组成微丝结构。

(5) 特殊的应为-应变曲线

(a) 应变诱发塑料-橡胶转变. SBS试样在S与B有相近组成是为层状结构,在室温下它是塑料,所以第一次拉伸是非晶态的曲线,在断裂之前除去外力,由于塑料相的重建需要很长时间,因而第二次拉伸时成为典型的橡胶的应为-应变曲线。第一次拉伸超过屈服点后,试样从塑料逐渐转变成橡胶,因而这种现象被称为应变诱发塑料-橡胶转变。电镜的照片表明,试样在亚微观上具有无规取向的交替层状结构,其中塑料相和橡胶相都成连续相。连续塑料相的存在,使材料在室温下呈现塑料性质。第一次拉伸时,塑料相发生歪斜,曲折,并已被撕碎成分散在橡胶连续相中的微区。橡胶相成为唯一的连续相使材料呈现高弹性,因而拉伸试样在外力撤去后变形能迅速回复。塑料分散相区则起物理交联作用,阻止永久变形的发生。

(b)硬性材料的应力-应变曲线. 易结晶的高聚物熔体在较高的拉伸应力场中结晶时可得到很高弹性的纤维或薄膜材料,其弹性模量比一般弹性体高得多,称为硬弹性材料。其应力-应变曲线有起始高模量,屈服不太典型,但有明显转折,屈服后应力缓慢上升.达到一定形变量后移去载荷形变会自发回复(对于上述情况下,移去载荷后必须加热后才能使形变完全恢复)。硬弹性主要是由形成微纤的表面能改变所贡献。

3 屈服

应力双生互等定律:.韧性聚合物拉伸到屈服点时,常看到试样出现与拉伸方向成大约角倾斜的剪切滑移变形带,由于两个相互垂直的斜截面上的剪切力的数值相等,方向相反,这们是不能单独存在的,总是同时出现,所以将这种性质称为~。

韧性材料拉伸时,斜截面上的最大切应力首先达到材料的剪切强度,因此试样上首先出现与拉伸方向成角倾斜的剪切滑移变形带,相当于材料屈服,进一步拉伸时,变形带中由于分子链高度取向强度提高,暂时不再发生进一步变形,而变形带的边缘则进一步发生剪切变形,同时倾角为的斜截面上也要发生剪切滑移变形,因而试样逐渐生成对称的细颈。脆性聚合物在最大切应力达到剪切强度之前,正应力已超过材料的拉伸强度,因此试样来不及发生屈服就断裂了。

从任意断面的应力分析入手可以说明这个现象.样条的任意斜截面(面积)上的法应力.

当=0时有最大值, ,

切应力为 当时有最大值,

也就是说,抗剪切强度总是比抗张强度低,由于分子链间的滑移总是比分子链断裂容易.所以拉伸时斜面上切应力首先达到材料的抗剪切强度而出现滑移变形带.

拉伸时由于截面积变化较大,使真应为-应变曲线与习用应力(或工程应力)-应变曲线有很大差别,真应力-应变曲线上可能没有极大值,而不能判断屈服点。可以用康西德雷(Considere)作图法,即从(即)点向曲线作切线,切点就是屈服点,因为满足以下屈服判据

高聚物的真应力-应变曲线可归纳为三类:

高聚物屈服的特征

①屈服应变大。②应变软化现象。许多高聚物在过屈服点后应为均有不大的下降,叫做应变软化。③屈服应力的应变速率依赖性。高聚物的屈服应力随应变速率增大而增大。④屈服应力的温度依赖性。高聚物的屈服应力随温度的增加而降低。⑤流体静压力对屈服应力的影响。压力增加,屈服应力随之增大。⑥高聚物在屈服时体积稍有缩小。⑦鲍新格(Bauschinger)效应明显。Bauschinger效应:指材料在一个方向塑性屈服后,在它反方向上的屈服就比较容易。

4 断裂

高分子链断裂的微观过程归结为:①化学键破坏;②分子间滑脱;③范德华力或氢键破坏;高分子材料的实际强度比理论强度小1~2个数量级。说明高聚物的断裂不是完全破坏每根链的化学键,也不是分子间完全滑脱,而很可能是首先将发生在未取向部分的氢键或范德华力的破坏,然后应力集中到取向的分子链上导致一些共价键断裂。

脆性断裂:在材料屈服之前发生的断裂称为~。

韧性断裂:在材料屈服之前发生的断裂称为~。

疲劳:高聚物可能在低于静态应为-应变曲线上的极限应为值之下就发生破坏,这叫做高聚物的~

5影响高聚物实际强度的因素

(1)化学结构。 链刚性增加的因素(比如主链芳环、侧基极性或氢键等)都有助于增加强度,极性基团过密或取代基过大,阻碍着链段的运动,不能实现强迫高弹形变,反而会使材料较脆。

(2)相对分子质量. 在临界相对分子质量(缠结相对分子质量)之前,相对分子质量增加强度增加,越过后拉伸强度变化不大,而冲击强度则随相对分子质量增加而增加,不存在临界值.

(3)支化和交联. 交联可以有效地增强分子链间的联系,使分子链不易发生相对滑移,随着交联度的提高,往往不易发生大的形变,强度增高。分子链支化程度增加,分子间的距离增加,分子间的作用力减小,因而使拉伸强度降低,但冲击强度会提高.

(4)结晶和取向. 结晶度增加,对提高拉伸强度、弯曲强度和弹性模量有好处。如果结晶度太高,则要导致冲击强度和断裂伸长率的降低,高聚物材料就要变脆,反而没有好处。如果在缓慢的冷却和退火过程中生成了大球晶的话,那么高聚物的冲击强度就要显著下降。结晶尺寸越小,强度越高。取向使材料的强度提高几倍甚至几十倍。另外取向后可以阻碍裂缝向纵深方向发展。

(5)应力集中物包括裂缝、银纹、杂质等缺陷在受力时成为应力集中处,它们会成为材料破坏的薄弱环节,断裂首先在此处发生,严重降低材料的强度,是造成高聚物实际强度与理论强度这间巨大差别的主要原因之一。纤维的直径越小,强度越高,这是由于纤维越细,纤维皮芯差别就越小,缺陷出现的概率就越小。根据这个原理,用玻璃纤维增加塑料可以得到高强度的玻璃钢。

缺陷的形状不同,应力集中系数也不同,锐口的缺陷的应力集中系数比钝口的要大得多,因为它造成更大的应力集中,使最大应力大大超过材料的破坏强度,致使制件从这小裂缝开始发生破坏。根据这一道理,一般制品的设计总是尽量避免有尖锐的转角,而是将制品的转弯昝做成圆弧形的。

(6)添加剂。塑剂、填料、增强剂和增韧剂都可能改变材料的强度。增塑使分子间作用力减小,从而降低了强度。另一方面,由于增塑剂使链段运动能力增强,故随着增塑剂含量的增强,材料的冲击强度提高。惰性填料(如CaCO3)只降低成本,强度也随着降低;活性填料有增强作用,如炭黑对天然橡胶的补强效果。纤维状填料有明显的增强作用。塑料增韧的方法是共混或共聚,用少量橡胶作为增韧剂去改进塑料的脆性。

(7)外力作用速度和温度。 在拉伸试验中提高拉伸速度和降低温度都会使强度降低。在冲击试验中提高温度会增加冲击强度。由于外力作用速度和温度的改变,甚至会使材料从脆性变为韧性,或反过来.

银纹:很多热塑性塑料,在储存以及使用过程中,由于应力以及环境的影响。往往会在表面出现陶器表面那样的裂纹,这些裂纹由于光的折射,看上去是发亮的,所以称为~。引起高聚物产生银纹的基本原因有:①力学因素(应力的存在,这里的应力指拉伸应力,纯压缩力不会产生银纹)。②环境因素(同某些化学物质接触)。

一些聚合物在屈服时会出现银纹(crazing)称屈服银纹。因加工或使用中环境介质与应力的共同作用也会出现银纹,称环境银纹。银纹垂直于应力方向,银纹常使材料变为不透明,称应力发白。银纹与裂纹或裂缝(crack)不同,它质量不等于零(约为本体的40%),仍有一定强度(约为本体的50%),这是由于银纹内尚有高度取向的分子链构成的微纤.银纹是裂缝的前奏,但材料在受力形成银纹时吸收了功,因而产生银纹有利于改善材料脆性。

应力集中:如果材料存在缺陷,受力时材料内部的应力平均分布状态将发生变化,使缺陷附近局部范围内的应力急剧地增加,远远超过应力平均值,这种现象称为~。

4.2 高弹性

1 橡胶的使用温度范围

是橡胶的使用下限温度,分解温度(decomposition temperature)是使用的温度上限。研究橡胶弹性的意义在于改善其高温耐老化性能,提高耐热性和设法降低其玻璃化温度,改善耐寒性。

(1) 改善高温耐老化性能,提高耐热性。 由于橡胶主链结构上往往含有大量双键,在高温下易于氧化裂解或交联,从而不耐热。改变主链结构使之不含或只含有少数双键,如乙丙橡胶等有较好的耐热性。取代基是供电的,如甲基、苯基等易氧化,耐热性差;取代基是吸电的,如氯,则耐热性好。交联键含硫少,键能较大,耐热性好。交联健是C-C或C-O,耐热性更好.

(2) 降低玻璃化温度,改善耐寒性。耐寒性不足的原因是由于在低温下橡胶会发生玻璃化转变或发生结晶,从而导致橡胶变硬变脆和更丧失弹性。造成玻璃化的原因是分子相互接近,分子之间相互作用加强,以致链段运动被冻结。因些任何增加分子链的活动,削弱分子间的相互作用的措施都会使玻璃化温度下降,结晶是高分子链或链段的规整排列,它会大大增加分子间的相互作用力,使聚合强度和硬度增加,弹性下降。因此任何降低聚合物的结晶能力和结晶速度的措施,均会增加聚合物的弹性,提高耐寒性。利用共聚、增塑等方法降低,能改善耐寒性。只有在常温下不易结晶的聚合物才能成为橡胶,而增塑或共聚也有利于降低聚合物的结晶能力而获得弹性。

2 高弹性的特点和热力学分析

1) 高弹性的特点

①弹性模量很小,而形变量很大,高聚物高弹模量随温度升高而正比地增加。橡胶是由线形的长链分子组成的,由于热运动,这种长链分子在不断地改变着自己的形状,因此在常温下橡胶的长链分子处于蜷曲状态。当外力使蜷曲的分子拉直时,由于分子链中各个环节的热运动,力图恢复到原来比较自然的蜷曲状态,形成了对抗外力的回缩力,正是这种力促使橡胶形变的自发回复,造成形变的可逆性。但是这种回缩力毕竟是不大的,所以橡胶在外力不大时就可以发生较大的形变,因而弹性模量很小。

②形变需要时间。橡胶是一种长链分子,整个分子的运动或链段的运动都要克服分子间的作用力和内摩擦力。一般情况下形变总是落后于外力,所以橡胶发生形变需要时间。

③形变时有热效应,即拉伸是放热,回缩时吸热,这种现象称Gough-Joule效应。普通固体材料与之相反,而且热效应极小。

高弹性的本质上是熵弹性。

2) 橡胶弹性的热力学分析

把热力学第一定律和第二定律用于高弹形变,则橡胶形迹后的张应力可以看成是由熵的变化和内能的变化两部分组成的.

上式的物理意义是:外力作用在橡胶上,一方面使橡胶的内能随着伸长而变化,另一方面使橡胶的熵随着伸长而变化。或者说,橡胶的张力是由于变形时内能发生变化和熵发生变化引起的。由于熵不能直接测定,上式变换成

上式的物理意义是:在试样的长度和体积V维持不变的情况下,试样张力随温度T的变化。这是可以直接从实验测量的。验证实验时,将橡胶试样等温拉到一定长度,在定长的情况下测定不同温度下的张力,以对T作图,得到一直线,直线的截距为.结果发现,,即橡胶拉伸时内能几乎不变,而主要是熵的变化.这种只有熵才有贡献的弹性称为熵弹性。

,拉伸时分子链由混乱变为规则取向,甚至结晶,所以dS<0,根据热力学第二定律,dQ=TdS,dQ<0,这就是为什么橡胶拉伸时放热的原因.

外力不引起内能变化,这只是理想的情况。实现上橡胶在拉伸时分子链构象发生了改变,显然反式、左旁式和右旁式等构象在能量上是不等的,所以内能变化不可避免,只是变化不大而已。较细微的实验发现,当伸长率小于10%时,曲线的斜率会出现负值,这种现象称为“热弹转变现象”或(“热弹倒置现象”)。这是由于实验是在一定的拉伸长度下做的,而试样热胀冷缩, 随着温度在变化.从而在低伸长率时,橡胶试样的热膨胀占优势,温度越高,张力越低,斜率为负.如果把一定的拉伸长度改为一定的伸长率,直线就不会出现负斜率了.

4.3 粘弹性

1 聚合物的力学松驰现象

粘弹性:聚合物的形变的发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为~.。弹性是一种力学松弛行为。粘弹性是高分子材料的一个重要的特性。

力学松驰:高聚物的力学性质随时间的变化称为~。

(1)静态粘弹性现象

按外力()、形变()、温度(T)和时间(t)四参量变化关系不同,有四种力学行为,它们是固定两个参量研究另两个参量之间的关系

力学性质四参量之间的关系

力学行为曲线 T t 所研究的关系

热机械曲线 固定 改变 改变 固定

应力-应变曲线 改变 改变 固定 固定

蠕变曲线 固定 改变 固定 改变

应力松驰曲线 改变 固定 固定 改变

蠕变(creep):就是在一定温度和较小的恒定应力下,聚合物形变随时间而逐渐增大的现象。蠕变反映了材料的尺寸稳定性和长期负载能力。

普弹形变:当高分子材料受到外力作用时,分子链内部键长和键角立刻发生变化,这种形变量是很小的,称为~。

高弹形变:是分子链通过链段运动逐渐伸展的过程,形变量比普弹形迹要大得多,但形变与时间成指数关系。

粘性流动:分子间没有化学交联的线型高聚物,会产生分子间的相对滑移,称为~。

外力除去后粘性流动是不能回复的,因此普弹形变和高弹形变称为可逆形变,而粘性流动称为不可逆形变。

应力松驰(stress relaxtion):就是在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐减弱的现象。

应力松驰和蠕变是一个问题的两个方面,都反映高聚物内部分子的三种运动情况,当高聚物一开始被拉长时,其中分子处于不平衡的构象,要逐渐过渡到平衡的构象,也就是链段顺着外力的方向运动以减少或消除内部应力。如果温度很高,远远超过,如常温下的橡胶,链段运动时受到的内摩擦力很小,应力很快就松驰掉了,甚至可以快到几乎觉察不到的地步。如果温度太低,比低很多,如常温下的塑料,虽然链段受到很大的应力,但是由于内摩擦力很大,链段运动的能力很弱,所以应力松驰极慢,也就不容易觉察得到。只有在玻璃化温度以上不远,链段在外力下可以运动,但运动时受到的内摩擦力又较大,只能缓慢运动,则可观察到较明显的蠕变现象。

影响蠕变和应力松驰的因素有:

①结构(内因)。一切增加分子间作用力的因素都有利于减少蠕变和应力松驰,如增加相对分子质量、交联、结晶、取向、引入刚性基团、添加填料等。

②温度或外力(外因).温度太低(或外力太小),蠕变和应力松驰慢且小,短时间内观察不到;温度太高(或外力太大),形变发展很快,形变以粘流为主,也观察不到.只有在玻璃化转变区才最明显。

(2)动态粘弹性现象

动态粘弹性现象:是在交变应力或交变应变作用下,聚合物材料的应变或应力随时间的变。

滞后(retardation):是高聚物在交变应力作用下,应变落后于应力变化的现象。

高聚物的滞后现象与其本身的化学结构有关,一般刚性分子的滞后现象小,柔性分子的滞后现象严重。然而滞后现象还受到外界条件的影响,如果外力作用的频率低,链段来得及运动,滞后现象很小;外力作用频率很高,链段根本来不及运动,聚合物好像一块刚硬的材料,滞后现象就很小;只有外力作用频率不太高时,链段可以运动,但又跟不大上,才出现明显的滞后现象。改变温度也发生类似的影响,在外力的频率不变的情况下,提高温度,会链段运动加快,当温度很高时,形变几乎不滞后于应力的变化;温度化很低时,链段运动速度很慢,在应力增长的时间内形变来不及发展,因而也无所谓滞后;只有在某一温度,约玻璃化温度上下几十度的范围内,链段能充分运动,但又跟不上,所以滞后现象严重。因此增加外力的频率和降低温度对滞后现象有着相同的影响。

内耗(internal friction):是存在滞后现象,每一次拉伸-回缩循环中所消耗的功,消耗的功转为热量被释放。

拉伸时外力对高聚物体系做的功,一方面用来改变分子链段的构象,另一方面用来提供链段运动时克服链段间内摩擦所需要的能量。回缩时,伸展的分子链重新蜷曲起来,高聚物体系对外做功,但是分子链回缩时的链段运动仍需克服链段间的摩擦阻力。这样一个拉伸-回缩循环中,有一部分被损耗掉,转化为热。内摩擦阻力越大,滞后现象越严重,消耗的功也越大,即内耗越大。

应力的变化为:

应变的变化为:

分别为最大应力和最大应变(正弦波的振幅); 为角频率; 为应变发展落后于应力的相位差,又称力学损耗角.应变总是落后于应力的变化,从分子机理上是由于链段在运动时受到内摩擦的作用. 越大,说明链段运动越困难.

滞后圈:橡胶拉伸和回缩的两条应为-应变曲线构成的闭合曲线称为~。滞后圈的大小等每一个拉伸-回缩循环中所损耗的功,即

常用来表示内耗的大小.

影响内耗的因素

:①结构(内因).侧基数目越多,侧基越大,则内耗越大。

②温度和外力作用频率(外因). 只有在玻璃化转变区内耗最为明显,因而通过-T曲线(温度谱)的峰值可以测得,通过曲线(频率谱)的峰值能测得玻璃化转变频率.

交变应力下的弹性模量为复数模量,由储能模量和损耗模量组成,即,或(这里考虑应力比应变领先一个相位角),

故反映材料形变时的内耗程度,是弹性分量, 反映材料形变时的内耗程度,是粘性分量. .高聚物在作为橡胶轮胎使用时,要求内耗越小越好,相反,在作为减震吸声等材料使用时,要求内耗要大一些才好。

蠕变和应力松驰一般称为静态实验,滞后与内耗为动态实验。长埋单的静态实验相当于极低频率的动态实验;极高频率的动态实验相当于较短时间的静态实验。这是线性粘弹体的一个特点。

2 粘弹性的力学模型

借助简单的力学模型(旧称机械模型),可以直观地对聚合物的粘弹性作唯象的描述,导出力学松驰中的各种数学表达式。力学模型有两个基本元件,即理想弹簧和理想粘壶。前者的力学性质符合胡克定律,应力和应变与时间无关,用以模拟普弹形变:

后者服从牛顿流体定律,应力和应变与时间有关,用以模拟粘性形变。

(1)Maxwell模型——用以模拟应力松驰

由一个理想弹簧和一个理想粘壶串联而成,模型受力时,两个元件的应力与总应力相等,而总应变则等于两个元件的应变之和,总应变速率也等于两个元件应变速率之和:

其数学表达式为

(2)Vogit(或Kelvin)模型——模拟交联高聚物的蠕变过程

由一个理想弹簧和一个理想粘壶并联而成,模型受力时,而总应力则等于两个元件的应力之和,两个元件的应变与总变相等 :

3 时温等效原理

时温等效原理(time-temperature correspondence principle):从分子运动的松驰性质可以知道,同一个力学松驰现象,既可在较高的温度下,较短的时间内观察到,也可以在较低的温度下,较长的时间内观察到。因些,升高温度与延长时间对分子运动和粘弹性都是等效的。利用时间和温度的这种对应关系,我们可以对不同温度或不同频率下测得的高聚物力学性质进行比较或换算,从而得到一些实际上无法无直接实验测得到的结果。

借助一个移动因子就可以将某一温度和时间下测定的力学数据,变为另一个温度和时间下的力学数据.

式中和分别为温度T时的松驰时间和时间尺寸, 和分别是参考温度时的松驰时间和时间尺度.上式两边取对数得.

因而不同温度下获得的粘弹性数据均可通过沿着时间轴的平移叠合在一起.用降低温度或升高温度的办法得到太短时间或太长时间无法得到的力学数据.设定一个参考温度,参考温度的曲线不动,低于参考温度的曲线往向左移动,高于参考温度的曲线往右移动,各曲线彼此叠合成光滑的组合曲线.不同的温度下的曲线的平移量不同,对于大多数非晶高聚物,与T的关系符合WLF方程.

(C1,C2均为经验常数)

为了使C1,C2有普适性,参考温度T0往往是特定值.经验发现,若以聚合物的作参考温度, .于是上式为

(此方程适用于)

反过来,若固定,对每一种聚合物都能找到一个特定温度为参考温度,这个参考温度大约在附近,于是方程变为:

符合时温等效原理物物质称为热流变简单物质.

4 Boltzmann叠加原理

玻耳兹曼(Boltzmann)叠加原理:指出高聚物的力学松驰行为是整个历史上诸松驰过程的线性加和的结果。对于蠕变过程,每个负荷对高聚物变形的贡献是独立的,总的蠕变等于各个负荷引起的蠕变的线性加和。对于应力松驰,每个应变对高聚物的应力松驰的贡献也是独立的,高聚物的总应力等于历史上诸应变引起的应力松驰过程的线性加和。其重要在于利用这个原理,我们可以根据有限的实验数据,去预测高聚物在很宽范围内的力学性质。

对于于蠕变行为,Boltzmann叠加方程为

对于应力松驰实验, Boltzmann叠加方程为

Boltzmann叠加方程不能解,实际应用的是它的加和方程.例如,在蠕变实验中,t=0时

如果时刻后再加一个应力,则引起的形变为:

根据Boltzmann原理,总应变是两者的线性加和

符合Boltzmann叠加原理的性质叫线性粘弹性;反之为非线性粘弹性.高分子材料的小形变都可以在线性粘弹性范围内处理.

5 粘弹性的实验方法

静态粘弹性的实验方法主要有两种:高温蠕变仪和应力松驰仪.前者在恒温恒负荷下检测试样的应变随时间的变化,单丝试样应变随时间的变化通过其一端穿过的差动变压器来测量;后者在恒温恒应变条件下测定应力随时间的变化,拉伸力为与试样连接的弹簧片的形变量来确定.

非晶态聚合物在以下,链段运动虽然已经冻结,但比链段小的一些运动单元仍可运动,在力学谱图上会出现多个内耗峰.习惯上把最高温度出现的内耗峰称为α松弛(即玻璃化转变),随后依次为β松弛,γ松弛,δ松弛….低于玻璃化转变的松驰统称为次级松驰. β松弛常归因于较大的侧基、杂原子链节的运动或短链段的局部松驰模式. γ松弛常归于4个以上—CH2—基团的曲柄运动,或与主链相连的小侧基如甲基的内旋转等.晶态聚合物的主转变为熔点,次级转变对应于晶型转变,晶区内部运动等.

扭摆法中通常用更直接的参数“对数减量”来表征力学损耗. 定义为两个相继振动的振幅的比值的自然对数,即

式中:p为正弦振动的周期,I为转动惯量;k为常数. 作图相当于以作图;以作图相当于以作图.两者都能反映聚合物的多重转变.

6. 蛇行理论

用一窝长蛇的穿游来形象地描述长链在基体中的曲折受阻滑动。当松驰发生时,分子链必定像蛇的运动那样通过这个存在着障碍物的路程。可以推导出粘度应当如何地依赖于链长度,或粘度与分子量这间的标度关系。

第五章 高聚物的流变性

热塑性塑料成型过程一般需经历加热塑化、流动成型和冷却固化三个基本步骤。加热塑化:经过加热使固体高聚物变成粘性流体;流动成型:借助注塑机或挤塑机的柱赛或螺杆的移动,以很高的压力将粘性流体注入温度较低的闭合模具内,或以很高的压力将粘性流体从所要求的形状的口模挤出,得到连续的型材。冷却固化:是用冷却的方法使制品从粘流态变成玻璃态。

聚合物的粘流发生在以上,热塑料、合成纤维和合成橡胶的加工成型都是在粘流态下进行的.由于大多数高分子的都低于300℃,经一般无机材料低得多,给加工成型带来很大方便,这也是高分子得以广泛应用的一个重要原因.

5.1牛顿流体与非牛顿流体

牛顿流体:粘度不随剪切应力和剪切速率的大小而改变,始终保持常数的流体,通称为~。

非牛顿流体:凡是不符合牛顿流体公式的流体,统称为非牛顿流体。

牛顿流体:

非牛顿流体:

式中为剪切速率,n为非牛顿性指数(n<1称为假塑性); 为表观粘度,表观粘度比高聚物真正的粘度(零剪切粘度小).

剪切变稀:大多数高聚物熔体和浓溶液属假塑性流体,其粘度随剪切速率的增加而减小,即所谓~。

剪切变稠:膨胀性流体与假塑性流体相反,随着剪切速率的增大,粘度升高,即发生~。

宾汉流体:或称塑性流体,具有名符其实的塑性行为,即在受到的剪切应力小于某一临界值是不发生流动,相当于虎克固体,而超过后,则可像牛顿液体一样流动。

触变(摇溶)液体:在恒定剪切速率下粘度随时间增加而降低的液体。

摇凝液体:在恒定剪切速率下粘度随时间而增加的液体。

5.2高聚物粘性流动的主要特点

1. 高分子流动是通过链段的位移运动来实现的,粘流活化能与相对分子质量无关.

2. 一般不符合物顿液体定律,即不是牛顿流体,而是非牛顿流体,常是假塑性流体.这是由于流动时链段沿流动方向取向,取向的结果使粘度降低.

3. 粘流时伴有高弹形变。高弹形变的恢复也是一个松驰过程,恢复的快慢一方面与高分子链本身的柔顺性有关,柔性好,恢复得快,另一方面也与高聚物所处的温度有关,温度高,恢复快。

5.3影响粘流温度的因素

1. 分子结构的影响 分子链柔顺性好,链内旋转的位垒低,流动单元链段就短,按照高分子流动的分段移动机理,柔性分子链流动所需要的孔穴就小,流动活化能也较低,因而在较低的温度下即可发生粘性流动。所以分子链越柔顺,粘流温度越低;而分子链越刚性,粘液温度越高。

2. 分子量的影响 玻璃化温度是高分子链段开始运动的温度,因此只与分子结构有关,而与分子量(分子量足够大后)关系不大。而粘流温度是整个高分子链开始运动的温度,此时两种结构单元都运动了,这种运动不仅与高聚物的结构有关,而且与分子量的大小有关。分子量越大则粘流温度越高。

3. 粘流温度与外力大小和外力作用的时间有关 外力增大实质上是更多地抵消着分子链沿与外力相反方向的热运动,提高链段沿外力方向向前跃迁的机率,使分子链的重心有效地发生位移,因此有外力时,在较低的温度下,聚合物即可发生流动。延长外力作用的时间也有助于高分子链产生粘性流动。

高聚物的粘流温度是成型加工的下限温度,而高聚物的分解温度是成型加工的上限温度。

5.4高聚物熔体的切粘度

1. 高聚物的流动性表征

零切速率粘度(零切粘度):剪切速率趋于零的粘度。

拉伸流动:液体流动可产生纵向的速率梯度场,其速度梯度的方向与流动方向一致,这种流动称为~。

熔融指数(melting index):定义为在一定温度和一定压力下10min流过毛细管的物料质量(g).对于一定的高聚物,MI越大表示流动性越好,粘度越小,另外也能表明相对分子质量越小.

2. 剪切粘度的测量方法

(1) 毛细管挤出粘度计. 毛细管流变仪或工业上常用的熔体流动速率仪(旧称熔融指数测定仪),后者所测值称为熔体流动速率

(2) 同轴圆筒粘度计。主要适用于高聚物浓溶液、溶胶或胶乳的粘度测定。

(3) 锥板粘度计。

(4) 落球粘度计。

3. 高聚物熔体的流动曲线

完整的流动曲线(包括熔体和溶液)分5个区,分述如下: ①第一牛顿区,剪切力太大,高分子链为无规线团,有缠结存在. ②假塑性区. 线团解缠结,链段流动方向取向. ③第二牛顿区. 分子链束完全取向,粘度达恒定值. ④胀流区,发生拉伸流动,粘度急剧上升,为胀塑性流体 ⑤湍流(熔体破裂).

4. 影响高聚物熔体切粘度的因素

(1) 温度. 随着温度的升高,熔体的自由体积增加,链段的活动能力增加,分子间的相互作用力减弱,使高聚物的流动性增大,熔体粘度随温度升高以指数方式降低。

在以上, 关系遵循Arrhenius方程.

, A为常数, 为粘流活化能.

在以下, 不再是常数,必须用自由体积理论处理, 关系适用WLF方程.

, 适用范围为~+100K

对于大多数聚合物,从而通过上式可以计算其他温度下的粘度.

(2) 剪切力和剪切速率的影响. 剪切力和剪切速率增加,使分子取向程度增加,从而粘度降低.升温和加大剪切国(或速率)均能使粘度降低而提高加工性能,但对于柔性链和刚性链的影响到不一样,对于刚性链宜采用提高温度的方法,而对柔性链宜采用加大剪切力(或速率)的方法.

(3) 液体的粘度是自由体积决定的,压力增加,自由体积减小,分子间的相互作用增大,自然导致流体粘度升高。

(4) 相对分子质量。高聚物熔体的剪切粘度随分子量的升高而增加。

对于加成聚合物,相对分子质量低于临界值(即缠结相对分子质量)时,

相对分子质量高于时

此规律为Fox-Flory经验方程.(或称3.4次方规律)。柔顺性越大的高分子,越易缠结,使流动阻力增大,因而零切粘度急剧增加,分子量小于时,分子这间虽然也可能有缠结,但是解缠结进行得极快,致使未能形成有效的拟网关结构。

(5) 分子量分布的影响 高聚物熔体出理非牛顿流动时时的切变速率随分子量的加大而向低切变速率移动。相同分子量时,分子量分布宽的出现非牛顿流动的切变速率值比分子量分布宽的要低得多。分子量分布较窄的或单分散的高聚物,熔体的剪切粘度主要由重均分子量决定。而分子量分布较宽的高聚物,其熔体粘度却可能与重均分子量没有严格的关系。两个重均分子量相同的同种高聚物试样,分子量分布较宽的可能比单分散试样具有较高的零切粘度。

5. 高聚物熔体的弹性表现

法向应力效应:法向应力是高聚物熔体弹性的主要表现。当高聚物熔体受到剪切作用时,通常在和力F垂直的方向上产生法向应力。除了作用在流动方向上的剪切应为外,还有分别作用在空间相互垂直的不相等的三个方向上的法向应力,和,这是由高聚物熔体的弹性效应造成的。

第一法向应力差= 第一法向应力有使剪切平板分离的倾向。

第二法向应力差= 第二,第三法向应力有使平板边缘处的高聚物产生突起的倾向。

第三法向应力差=

由于法向应力差的存在,在高聚物熔体流动时,会引起一系列在牛顿流体活动中所曾见到的现象:

韦森堡(Weisenberg)效应:当高聚物熔体或浓溶液在各种旋转粘度计中或在容器中进行电动搅拌时,受到旋转剪切作用,液体会沿内筒壁或轴上升,发生包轴或爬杆现象,这类现象称为~。

挤出物胀大:当高聚物熔体从小孔、毛细管或狭缝中挤出时,挤出物的直径或厚度会明显大于模口的尺寸,这种现象叫做~,又称为巴拉斯(Barus)效应或称离模膨胀。

熔体破裂(又称不稳定流动、湍流):剪切速率超过某一临界值后,随着剪切速率的继续增大,挤出物的外观依次出现表面粗糙、尺寸周期性起伏,直到破裂成碎块等种种畸变现象,这些现象统称为~。

Tf是表征粘流特性的另一物理量.影响Tf的因素有以下三个:

(1) 分子结构.柔顺性差,分子间作用力大,Tf较高.

(2) 相对分子质量. 相对分子质量越大,Tf越大,不存在临界值.

(3) 外力大小和作用时间. 增加外力和作用时间都有利于分子链运动,而降低Tf.

第六章 高聚物的电、热、光性能

高聚物的电学性质:是指聚合物在外加电压或电场作用下的行为及其所表现出来的各种物理现象。

6.1 聚合物的介电性能

介电性是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质,通常电常数和介电损耗来表示。

(1)介电极化 绝大多数高聚物是优良的电绝缘体,有高的电阻率,低介电损耗、耐高频高的击穿强度。但在外电场作用下,或多或少会引起价电子或原子核的相对,造成了电荷的重新分布,称为极化。电介质在外电场下发生极化的现象,是其内部分子和原子的电荷在电场中运动的宏观表现。主要有以下几种极化;①电子极化——分子中各原子的价电子云在外电场作用下,向正极方向偏移,发生了电子相对骨架的移动,使分子的正电荷中心的位置发生变化引起的。②原子极化——是分子骨架在外电场下发生变形造成的。分子弯曲极化是原子极化的主要形式。③偶极极化——在外电场的作用下,极性分子沿电场的方向排列,产生分子的取向。前两种产生的偶极矩诱导偶极矩,后一种为永久偶极矩的极化。

极化偶极矩(μ)的大小与外电场强度(E)有关,比例系数α称为分子极化率,

按照极化机理不同,有电子极化率,原子极化率(上述两者合称变形极化)和取向极化率,即:

为永久偶极矩。

因而对于极性分子,对于非极性分子。

界面极化:由于在外电场作用下,电介质中的电子或离子在界面处堆集的结果,称为~。

根据高聚物中各种基团的有效偶极矩,可以把高聚物按极性大小分为四类。

   非极性:PE、PP、PTFE;弱极性:PS、NR;极性:PVC、PA、PVAc PMMA;强极性:PVA、PET、PAN、酚醛树脂、氨基树脂。

   高聚物的有效偶极矩与所带基团的偶极矩不完全一致,结构对称性会导致极矩部分或全部相互抵消。

介电常数ε是表示高聚物极化程度的宏观物理量,它定义为介质电容器,容C比真空电容器C0的电容增加的倍数,即

式中:Q0为极板上的原有电荷;以它反映介质储存电能的能力。

宏观物理理ε与微现物理量α之间的关系可以用Clausius-Mosotti方程给 即:

摩尔极化度:

6.2 介电损耗

聚合物在交变电场中取向极化时,伴随着能理消耗,使介质本身发热,这种现象称为聚合物的介电损耗。

产生介电损耗有以下两个原因:

(1)电介质中含有能导电的载流子,这在外加电场的作用下,产生导电流,消耗掉一部分电能,转化为热能,称为电导损耗。

(2)电介质在交变电场下的极化过程中,与电场发生能量交换。取向极化过程是一个松驰过程,电场使偶极子转向时,一部分电能损耗于克服介质的内粘滞阻力上,转化为热量,发生松驰损耗。

固体聚合物在不同温度下或不同频率下观察介电损耗的情况,得到的温度谱或频率谱称为高聚物的介电松驰谱,它与力学松弛谱一样用开研究高聚物的转变,特别是多重转变。测定聚合物介电松弛,谱的方法主要有热释电流法(TSC)。TSC属低频测量,频率在10-3-10-5范围,分辩率高于动态力学和以往的介电方法。

影响介电损耗的因素:

(1)分子极性越大,极性基团密度越大,则介电损耗越大。

(2)频率和温度。与力学松弛相似。在极限高频下,偶极由于惯性,来不及随电场变化改取向,只有变形极化能够发生。频率低时,偶极取向完全跟得上电场的变化,能量损耗低。对一般高聚物来说,在温度不太高时,升高温度,分子间相互作用减弱,粘度降低,使偶极转动取向容易进行,极化加强;介电常数增加,到一定温度范围,温度升高,分子热运动加剧,对偶极取向的干扰增大,反而不利于偶极取向,使极化减弱,介电常数即开始随温度升高而减小。

(3)外来物的影响。增塑剂的加入使体系黏度降低,有利于取向极化,介电损耗降移向低温。极性增塑剂或导电性杂质的存在会使和都增大。聚合物作为电工绝缘材料或电容器材料使用时,要求其介电损耗越小越好;相反,在塑料高频焊接或高频“热处理”情况下,要求大些才好。

6.3 聚合物的导电性

1 高聚物的导电机理

高聚物主要存在两种导电机理:①一般高聚物主要是离子电导。有强极性原子或基因的高聚物在电场下产生征解离,可产生导电离子。非极性高聚物本应不导电,理论比体积电阻为1025,但实际上要大许多数量级,原因是杂质(未反应的单体、残留催化剂、助剂以及水分)离解带来的。②聚合物导体、半导体主要是电子电导。

2 导电性的表征

相应地,电阻也可以分为体积电阻和表面电阻,有

为了比较不同材料的导电性,通常用电阻率表示,即

体积电阻率(又称比体积电阻)

表面电阻率(又称比表面电阻)

s,h,l,b分别为试样的面积、厚度、电极的长度和电极间的距离。

电阻率(未特别注明时指体积电阻率)是材料重要的电学性质之一。按分为导体、半导体和绝缘体三类。有时也用电导率表示,电导率是电阻率的倒数。

3 影响导电性的因素:①极性聚合物的导电性远大于非极性聚合物;②共轭体系越完整,导电性越好;③结晶度增大使电子电导增加,但离子电导减少;④“杂质”含量越大,导电性越好;⑤温度升高,电阻率急剧下降,导电性增加,利用这点可以测定。

4 导电性高分子

导电性高分子可分为以下三类。

(1)结构型。聚合物自身具有长的共轭大II键结构,如聚乙炔、聚苯乙炔、聚酞菁铜等,通过“掺杂”可以提高导电率6~7个数量级。

(2)电荷转移复合物。由电子给体分子和电子受体分子组成的复合物,目前研究较多的是高分子给体与小分子受体的复合物,如聚2-乙烯基吡啶或聚乙烯基咔唑作为高分子电子给体。

碘作为电子受体,可做成高效率的固体电池。

(3)添加型。在树脂中添加导电的金属(粉或纤维)或炭粒等组成。其导电机理是导电性粒子相互椄触形成连续相而导电,因而金属粉的含量要超过50%。

6.4 介电击穿

在强电场下,聚合行从介电状态变为导电状态,称为电击穿。击穿强度(又称介电强度)定义为击穿时电极间的平均电位梯度,即击穿电压和样品厚度 h之比。

 ,其中表征材料所能承受的最大电场强度,是高聚物绝缘材料的一项重要指标。聚合物绝缘材料的Eb一般为107V/cm左右。介电击穿机理可分为本征击穿(电击穿)、热击穿、化学击穿、放电击穿等,往往是多种机理综合发生。

6.5 聚合物的静电现象

在任何两个固体,不论其化学组成是否相同,只要它们的物理状态不同,其内部结构中电荷载体能量的分布也就不同。这样两个固体接触时,在固-固表面就会发生电荷的再分配。在它们重新分离之后,每一固体将带有比接触或摩擦前更多的正(或负)电荷。这种现象称为静电现象。高聚物在生产、加工和使用过程中会与其他材料、器件发生接触或摩擦,会有静电发生。由于高聚物的高绝缘性而使静电难经漏导,吸水性低的聚丙烯腈纤维加工时的静电可达15kV以上。

电子从材料的表面逸出,需要克服原子核的吸引作用,它所需要的最小能量可用功函数(即逸出功)来表征。摩擦时电子从功函数小的一方转移到功函数大的一方,使两种材料分别带上不同的静电荷。物质在上述序列中的差距越大,摩擦产生的电量也越多。一般认为,摩擦起电序与有一定关系,大的的带正电,小的带负电。

静电一般有害,主要是:①静电妨碍正常的加工工艺;②静电作用损坏产品质量;③可能危及人身及设备安全。因而需要消除静电。目前较广泛采取的措施是将抗静电剂加到高分子材料中或涂布在表面。抗静电剂是一些表面活化剂,如阴离子型(烷基磺酸钠、芳基磺酸酯等)、阳离子型(季胺盐、胺盐等)以及非离子型(聚乙二醇等)。纤维纺丝工序中采取“上油”的办法,给纤维表面涂上一层吸湿性的油剂,增加导电性。

静电现象有时也能加以利用。如静电复印、静电记录、静电印刷、静电涂敷、静电分离与混合、静电医疗等,都成功地利用了高分子材料的静电作用。

第七章 高分子溶液性质

高分子溶液:高聚物以分子状态在溶剂中所形成的均相混合物称为~.高分子溶液的热力学性质包括溶解过程中体系中体系的焓、熵、体积的变化,高分子溶液的渗透压,高分子在溶液中的分子形态与尺寸,高分子与溶剂的相互作用,高分子溶液的相分离等; 高分子溶液的粘度、高分子在溶液中的扩散和沉降等称为流体力学性质.

高分子溶液性质的特点:1.高聚物的溶解过程比小分子物质的溶解过程要缓慢得多. 2. 柔性高分子溶液的粘度比小分子纯溶剂的粘度要大得多. 3.高分子溶液是处于热力学平衡状态的真溶液. 4.高分子溶液的行为与理想溶液的行为相比有很大偏离.偏离的原因是高分子溶液的混合熵比小分子理想溶液的混合熵大很多. 5.高分子溶液的性质存在着分子量依赖性,而高聚物又具有分子量多分散性的特点.

溶解:是指溶质分子通过扩散与溶剂分子均匀混合成分子分散的均相体系.分子量大的溶解度小,晶态高聚物的溶比非晶态高聚物要困难的多.

溶胀:溶剂分子渗入高聚物内部,使高聚物体积膨胀.

溶度参数δ: , δ的量纲是(卡/厘米3)1/2 , 越接近,两种液体愈能相互溶解.

溶剂的选择:相似相溶,极性相近”

理想溶液:指溶液中溶质分子间、溶剂分子间和溶质溶剂分子间的相互作用都相等,溶解过和中没有体积的变化();也没有焓的变化. (),下标M指混合过程, 上标i指理想溶液.

Flory-Huggins理论:借助于似晶格模型,运用统计热力学方法推导出高分子溶液的混合熵,混合热等热力学性质的表达式,并作如下假定: 1. 溶液中分子的排列也像晶体一样,是一种晶格的排列,每个溶液分子占一个格子,每个高分子占有x个相连的格子. 2.高分子链是柔性的,所有构象具有相同的能量. 3. 溶液中高分子链段是均匀分布的,即链段占有任一格子的几率都相等—这是导致理论与实验偏差的主要原因之一.

良溶剂:当<1/2时, <0,使溶解过程的自发趋势更强,此时的溶剂称为该高聚物的~

θ条件(状态): 当=1/2时, =0时才符合理想溶液的条件.

θ溶剂:θ状态下所用的溶剂称为~.

θ温度:θ状态下所处的温度称为~.

Flory-Krigbaum稀溶液理论:基本假定为: 1. 整个高分子稀溶液可看作被溶液化了的高分子链段云一朵朵地分散在溶液中. 2. 在稀溶液中,一个高分子很难进入另一个高分子所占的区域,也就是说,每个高分子都有一个排斥体积u.

排斥体积:在高分子溶液中,结构单元的分布实际上是不均匀的,高分子链以一个个松懈的链球散布在纯溶剂中,每个链球都占有一定的体积,它不能被其它分子的链段占有称为~.

坍塌线团:如果链段比较柔性或链段与链段之间的吸引力较大,链相互接触的两部分体积小于它们各自的体积之各,则内排斥体积为负值,此时的链称为~.

无扰尺寸:在特殊情况下,正的内排斥体积和负的外排斥体积正好抵消,u=0,线团的行为正好像无限的(不占体积的)链一样,处于无干扰状态,这种状态的尺寸称为~.

亚浓溶液:在稀溶液中,高分子线团是互相分离的,溶液中的链段分布不均一,当浓度增大到某种程度后,高分子线团互相穿插交叠,整个溶液中的链段分布趋于均一.在亚浓溶液中高分子链的尺寸不仅与分子量有关,而且与溶液的浓度有关.

临界交叠浓度(接触浓度)C*:在两种溶液之间,若溶液浓度从稀向浓逐渐增大,孤立的高分子线团则逐渐靠近,靠近到开始成为线团密堆积时的浓度. .

增塑:高聚物因加入高沸点、低挥发性并能与高聚物混溶的小分子,而改变其力学性质的行为,称之为~.

增塑剂:添加到线型高聚物中使其塑性增大的物质(高沸点、低挥发性)称为~. 其增塑原因一般认为是由于增塑剂的加入导致高分子链间相互作用的减弱.非极性增塑剂溶于非极性聚合物中,使高分子链之间的距离增大,从而使高分子链之间的作用力减弱,链段间相互运动的摩擦力也减弱,这样,使原来在本体中无法运动的链段能够运动,因而玻璃化温度降低,使高弹态在较低温度下出现;在极性高聚物中,由于极性基团或氢键的强烈相互作用,在分子链间形成了许多物理交联点.增塑剂分子进入大分子链之间,其本身的极性基团与高分子的极性基团相互作用,从而破坏了高分子间的物理交联点,使链段运动得以实现,因此使Tg降低值与增塑剂的摩尔数成正比,与体积无关.

增塑剂的选择须考虑以下因素:1它与高聚物的混溶性要好,2.有效性:要求增塑剂能在制品中长期保存,在贮藏和使用过程中损失越少越好,3.耐久性.莱坞4.价廉易得.

内增塑:在高分子链上引入其它取代基或短的链段,使高聚物结晶破坏,分子链变柔,易于活动,这种方法称为~.

凝胶:是高分子链之间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融.

冻胶:是由范德会力交联形成的,加热可以拆散范德华交联,使冻胶溶解.

溶胀:交联高聚物的溶胀过程实际上是两种相反趋势的平衡过程:溶剂渗入高聚物内使体积膨胀,从而引起三维分子网的伸展,交联点之间分子链的伸展降低了它的构象熵值,引起了分子网的弹性收缩力,使分子网收缩,当这两种相反的作用相互抵消时,就达到了溶胀平衡.

溶胀比Q:交联高聚物在溶胀平衡时的体积与溶胀前体积之比称为~.

扩散:高分子在溶液中由于局部浓度或温度的不同,引起高分子向某一方向的迁移,这种现象称为~.

旋转扩散:如果高分子的构象是不对称的,呈棒状或椭球状,在溶液中高分子会绕其自身的轴而转动.

溶液纺丝,熔融纺丝:将聚合物熔融或是将聚合物溶解在适当的溶剂中配成浓溶液,然后由喷丝头喷成细流,经冷凝或凝固成为纤维.前都称为熔融纺丝,后都称为溶液纺丝.

聚电解质:在侧链中有许多可电离的离子性基团的高分子称为~.

第八章 高分子的分子量及其分布

分布宽度指数:指试样中各个分子量与平均分子量之间的差值的平方平均值.

端基分析:假若聚合物的化学结构是明确的,每个高分子链的末端有一个可以用化学方法作定量分析的基团,那么在一定重量的试样中末端基团的数目就是分子链的数目.

此法只适用于分析分子量较小的聚合物,可分析的分子量的上限是2×104左右,如果用其它方法求得,反过来可求出nt,对于支化高分子,支链数目应为nt-1.

沸点升高和冰点降低法:利用稀溶液的依数性测定溶质相对分子质量的方法,对于高分子稀溶液,只有在无限稀的情况下才符合理想溶液的规律,因而必须在多个浓度下测,然后以△T/c对c作图,外推到c→0时的值来计算相对分子质量.

膜渗透压法(测Mn)当高分子溶液与纯溶剂被半透膜隔开时,由于膜两边的化学位不等,发生了纯溶剂向高分子溶液的渗透.当渗透达到平衡时,渗透平衡时两边液体的压力差称为溶液的渗透压.

A2为第二维利系数:其物理意义为,可把它看作高分子链段与链段之间以及高分子与溶剂分子间相互作用的一种量度,它与溶剂化作用和高分子在溶液里的形态有密切关系.在良溶剂中,高分子链由于溶剂化作用而扩张,高分子线团伸展,A2为正值, .随着温度的降低或不良溶剂的加入, 值逐渐增大,当时,高分子链紧缩,A2为负值.当时,A2=0,此时溶液符合理想溶液的性质,这时的溶剂称为θ溶剂.

气相渗透(VPO):将溶液滴和溶剂同时悬吊在恒温T0的纯溶剂的饱和蒸汽气氛下时,蒸汽相中的溶剂分子将向溶液滴凝聚,同时放出凝聚热,使溶液滴的温度升至T,经过一定时间后两液滴达到”定态”即存在稳定的温差△T=T-T0.

光散射法:—-重均分子量. 利用光散射性质测定分子量和分子尺寸的方法称为~. 对于小粒子(尺寸<)的稀溶液,散射光强是各个分子散射光强的简单加和,没有干涉.对于大粒子(尺寸>)稀溶液,分子中的某一部分发出的散射光与另一部分发出的散射光相互干涉,使光强减弱,称内干涉;若从溶液中某一分子所发出的散射光与从另一分子所发出的散射光相互干涉,称为外干涉. 单位体积所产生的散射光强I与入射光强I0之比乘以观测距离的平方为瑞利(Rayleigh)因子Rθ.,散射休积是指被入射光照射到而同时又能被检测器观察到的体积.

测定不同浓度和不同角度下的瑞利比,以对作图(q为任意数,不影响)作图,将两个变量c和θ外推至零,从截距求,斜率求和A2,这种方法称为Zimm作图法.

黏度法:利用毛细管黏度计通过测定高分子稀溶液的相对黏度,求得高分子的特性黏数,然后利用特性黏数与相对分子质量的关系式计算高聚物的黏均相对分子质量.粘度不随剪切力和剪切速度而改变的液体称为牛顿流体.

相对黏度:

增比黏度:

比浓黏度(黏数):

对数黏度(比浓对数黏度)

特性黏数:

乌氏黏度计:

外推法求特性黏数采用的黏度-浓度关系式有:

Huggins方程式:

一点法只用一个浓度计算[η],

Mark-Houwink方程:,K,a的订定:制备若干个分子量较均一的聚合物样品.然后分别测定每个样品的分子量和极限粘数.分子量可以用任何一种绝对方法测定.由M-H方程两边取对数,得,以各个试样的对作图,应得一直线,斜率是a,而截距是lgK.

高分子溶液的主要参数

溶剂 T A2 a

θ溶剂 0 θ 0.5 1 0 0.5 0 最小 最小 偏低

良溶剂 <0 >θ <0.5 >1 >0 >0.5 0~0.23 较大 较大 正常

分子量分布:是指聚合物试样中各个级分的含量和分子量的关系.

分布函数

Schulz函数:

董履和函数:

对数正态分布函数:

逐步降温分级法:将聚合物溶解在某种合适的溶剂中,逐渐降温,使溶液分相,把凝液相逐一取出,得到若干个级分,先得到的级分平均分子量最大,以后依次降低.

逐步沉淀分级法:在恒温条件下,在高分子溶液中逐渐加入沉淀剂,使之产生相分离,将浓相取出,称为第一个级分,然后在稀相中再加入沉淀剂,又产生相分离,取出浓相,称为第二个级分.如此继续下去,得到若干个级分.各级分的平均分子量随着级分序数的增加而递减.

临界共溶点:相分离的起始条件.

相分离时,溶剂和高分子分别在稀相和浓相的化学位相等,即

溶剂 , 高分子

定义两相分配系数,则高分子在浓、稀两相中的分配比例为或 .此式是分级的理论基础,也就是说,x越大(即相对分子质量越大)在浓相中比例越大.σ越大(即越大,可以通过加入沉淀剂或降温来实现),浓,稀相比越大.( ,T越小, 越大).

上式中:

常用的数据处理方法有:

(1)作图法(称习惯法或中点法):式假定每一级分的相对分子质量分布对称于其平均相对分子质量,相邻两个级分的相对分子质量分布没有重叠,因此第个级分的累积质量分数,以对作图,并视为连续分布,就得积分质量分布曲线.再通过图解微分求出曲线各点的斜率,然后对M作图,就得微分质量分布曲线.

计算平均相对分子质量用十点法,即在积分质量分布曲线上读取I=5%,15%,25%,…..95%等十个点的值,用下式(实际上是定义式)计算:

(2)董函数适应法: 假定实验数据符合董函数

以对作图从直线截距和斜率分别求出y和z两个参数.再利用前述重函数求得.

凝胶色谱法

体积排除机理:当试样随淋洗溶剂进入柱子后,溶质分子即向多孔性凝胶的内部孔洞扩散.较小的分子除了能进入大的孔外,还能进入较小的孔,而较大的分子只能进入较大的孔,甚至完全不能进入孔洞而先被洗提.因而尺寸大的分子先洗提出来,尺寸小的分子较晚被洗提出来,分子尺寸按从大到小的次序进行分离.

1) 校准曲线

GPC得到的原始曲线是洗出体积(又称洗胶体积、淋洗体积和保留体积)Ve与仪器响应值(常用示差折光检测器,其响应值为△n)的关系. △n经过归一化后得质量分数

Ve还必须转换成相对分子质量才能成为分布曲线.根据分离机理,利用一组已知相对分子质量的标样测得Ve,以lgM对Ve作图得较准曲线,直线两头的拐弯是因为相对分子质量太大的部分被完全排斥而相对分子质量太小的部分完全”渗透”导致的.

2)普适校准曲线

不同高分子尽管相对分子质量相同,但体积不一定相同.用一种高分子(常用阴离子聚合的窄分布聚苯乙烯作标样)测得的校准曲线不能用于校准其他高分子.必须找到相对分子质量与体积的关系.

人们发现高分子的(称为流体力学体积)相同,淋出体积就相同,以对Ve作的曲线称为普适校准曲线.从一种聚合物的相对分子质量可以利用下面关系式计算另一种聚合物的相对分子质量.

因为,所以

3)平均相对分子质量的求法

(1)定义法:由于GPC的级分数很多(大于20),可以直接代入定义式计算,即

为检测器的响应值.

(2)函数适应数 许多聚合物的GPC谱图是对称的,接近Gauss分布,可用正态分布函数描述.

式中为标准方差,等半峰宽的1/2,近似等峰底宽的1/4,Vp为峰值处的洗出体积.B为斜率.

(3)峰加宽效应及其改正

对于单分散样品,GPC谱图理应是条谱线,但实际上仍是一个窄峰,峰加宽的原因是多流路效应、纵向分子扩散、孔洞中的扩散和吸附效应等.改正加宽效应的方法常用改正因子G.

令改正因子 ,则

(4)柱效

柱效定义为理论塔板物质的量高度(HETP),等于理论塔板数N的倒数

高分子溶液

溶剂分子渗入聚合物内部,即溶剂分子和高分子的某些链段混合,使高分子体积膨胀-溶胀。高分子被分散在溶剂中,整个高分子和溶剂混合-溶解。

结晶聚合物的先熔融,其过程需要吸热。线形聚合物, 先溶涨,后溶解;结晶聚合物, 先熔融,后溶解;交联聚合物, 只溶涨,不溶解

溶剂选择:“相似相溶”原则,“溶度参数相近”原则,“高分子-溶剂相互作用参数c小于1/2”原则。

理想溶液:溶液中溶质分子间,溶剂分子间,溶质和溶剂分子间的相互作用是相等的,溶解过程中没有体积变化,也无热量变化。

高分子合金又称多组分聚合物,在该体系中存在两种或两种以上不同的聚合物,不论组分是否以化学键相连接

橡胶增韧可以大幅度提高材料的韧性,但却不太影响材料的模量和强度。这也是共混高聚物的优点。原因是塑料作为连续相,起作保持增韧前材料的抗长强度和刚性的作用,而引入的橡胶分散相,可以帮助分散和吸收冲击能量。

非晶态聚合物作塑料使用时,其使用上限温度是Tg。对某些塑料,为了增加韧性,采取增塑的办法,如PVC塑料。但增塑却使Tg下降,使塑料的使用温度降低;若增塑剂太多时得到的塑料甚至在室温时已失去刚性,只能作软塑料用。

相容性观察方法总结:直接观察共混物的透光性,透明:相容性好,浑浊:相容性差;测量共混物的 Tg – 玻璃化转变温度。

增塑剂的选择:互溶性——一般要求增塑剂是高聚物的良溶剂。有效性——由于增塑剂的加入,一方面提高了产品的弹性、耐寒性和抗冲击性,另一方面却降低了它的硬度、耐热性和抗张强度。耐久性——为了使产品的性能在长期使用下保持不变,就要求增塑剂稳定地保存在制品中。

良溶剂:;劣溶剂:;状态:

高分子溶液:高聚物以分子状态分散在溶剂中所形成的均相混合物,热力学上稳定的二元或多元体系.

内聚能:克服分子间的作用力,把一摩尔液体或固体分子移到其分子间的引力范围之外所需要的能量。

混合溶剂的溶度参数可按下式估算:

当一定温度下高分子-溶剂相互作用参数致使“超额化学位变化”这种溶液状态称状态,该温度称温度,该溶剂称θ溶剂。此时溶剂-溶剂、链段-链段、链段-溶剂间的相互作用相等,排斥体积为零,大分子与溶剂分子可以自由渗透,大分子链呈现自然卷曲状态。

排斥体积:高分子链是以一个个松散的链球散布在纯溶剂中,每一个链球都占有一定的体积。在这体积内将排斥其它的高分子,因而称排斥体积。

第二维力系数的计算公式:;它的物理意义是高分子链段与链段间的内排斥与高分子链段与溶剂分子间能量上的相互作用,两者相互竞争的一个量度。

冻胶是由范德华力交联形成,加热可以拆散这种交联作用,使冻胶溶解。分为分子内冻胶和分子间冻胶两种形式。凝胶是高分子链之间以化学键形成的交联结构的溶胀体,加热时既不溶解也不熔融。

由于聚合过程复杂,即使同一种聚合物,分子链也长短不一,分子量大小不同。聚合物分子量的这种特征称为“多分散性”。

数均分子量:以数量为统计权重的平均分子量。重均分子量:以重量为统计权重的平均分子量。z均分子量:以z值为统计权重的平均分子量。粘均分子量:用稀溶液粘度法测得的平均分子量。

聚合物分子量分布可用多分散系数d来表示:。

平均分子量测定方法:端基分析法,膜渗透压法、蒸气压法、沸点升高法和冰点下降法等(测定数均分子量),粘度法(测定的是黏均分子量)、超速离心沉降法(测定的是Z均分子量),光散射法(测定重均分子量),凝胶渗透色谱法(GPC法),该方法通过测定聚合物分子量分布求得平均分子量。

特性粘度:定义为溶液浓度无限稀释时的比浓粘度或比浓对数粘度。

聚合物的高弹性与粘弹性

1、三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。

2、橡胶弹性是由熵变引起的,在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小,当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,分子链由伸展再回复卷曲状态,因而形变可逆。

3、在橡胶下悬一砝码,保持外界不变,升温时会发生什么现象?

橡胶在张力(拉力)的作用下产生形变,主要是熵变化,即蜷曲的大分子链在张力的作用下变得伸展,构象数减少。熵减少是不稳定的状态,当加热时,有利于单键的内旋转,使之因构象数增加而卷曲,所以在保持外界不变时,升温会发生回缩现象。

4、橡胶弹性的本质是熵弹性。橡胶拉伸时,内能几乎不变,主要引起熵变,所以说是熵弹性。

5、橡胶:拉伸——放热 回缩——吸热

橡胶弹性是熵弹性, 回弹动力是熵增.

橡胶在拉伸过程中放出热量, 回缩时吸收热量.

6、高聚物分子运动的特点:运动单元的多样性

7、橡胶状态方程:

橡胶的热力学状态方程:

8、聚合物的形变与时间有关,但不成线性关系,两者的关系介乎理想弹性体和理想粘性体之间,聚合物的这种性能称为粘弹性。聚合物的力学性能随时间的变化统称为力学松弛。最基本的力学松弛现象包括蠕变、应力松弛、滞后和力学损耗等。

9、松弛时间:在一定的温度和外力作用下,高聚物分子从一种平衡态过渡到另一种平衡态需要一定的时间,这个时间称为松弛时间。

关于松弛时间的阿伦尼乌斯方程:

10、应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间而逐渐衰减的现象。

11、蠕变:在恒温下施加一定的恒定外力时,材料的形变随时间而逐渐增大的力学现象。

12、应力松弛:在恒温下保持一定的恒定应变时,材料的应力随时间而逐渐减小的力学现象。

高分子链的构象重排和分子链滑移是导致材料蠕变和应力松弛的根本原因。

13、两种力学模型:

Maxwell模型:描述的是理想粘性体的蠕变

Kelvin模型:描述的是理想弹性体的应力松弛

14、波尔兹曼叠加原理:聚合物的力学松弛行为是其历史上诸松弛过程的线性加和的结果。

15、时温等效原理:升高温度和延长观察时间对高分子运动以及聚合物粘弹性是等效的,这个等效过程可以借助于一个转换因子at来实现这个就是时温等效原理。

16、WLF方程:

17、应变落后于应力相角的现象称为滞后。这是由于受到外力作用时,链段通过热运动达到新平衡需要时间,由此引起应变落后于应力的现象。

18、链段间发生移动,磨察生热,消耗能量,所以称为内耗。

19、储能模量 E’和损耗模量E’’和损耗因子

高分子材料考研()