打卡第8天
导数的概念与性质
01
相关知识点
一元函数导数的概念、性质及应用,导数的几何意义(求曲线的切线与法线),左导数、右导数,导数存在的必要条件,函数可导的充要条件,函数可导性判定,基本初等函数的导函数,利用定义求导数,函数的极限定义式的应用,利用导数的极限式求函数导数与判定可导性的问题类型(抽象函数可导性的判定、函数一点处可导性的判定与导数的计算,在条件中没有可导性条件结论中要用导数结果,分段点处函数可导性的判定,对于左右函数表达式不同的则用左右导数的定义式),利用导数的定义式求极限(一般适用于包含有可导条件求极限的问题)
02
03
打卡练习
打卡说明
专题练习的练习题整理来源于历届(自1987年以来)全国硕士研究生招生统一考试数学一、数学二、数学三真题,全国大学生数学竞赛的初赛、决赛的历届非数学类、数学类真题和历届数学分析考研真题,同时还包括 一些省份(赛区),比如北京、江苏、浙江、陕西、天津、大连等的竞赛真题,一些高校的竞赛选拔、模拟练习题, 与部分经典的考研、竞赛辅导参考书,也包括一些经典教材中的例题.
对于来源于全国考研真题与竞赛真题的问题将在参考解答中进行标注,对于只标注年份的则表示来源于全国硕士研究生招生统一考试的问题,对于竞赛题会标准来源于年份及初赛、决赛,非数学、数学类。对于没有标准来源的问题,更多的是来源于多个高校曾经都使用过的数学分析考研真题!
所有练习都经过精细挑选,题型、练习及求解思路、方法具有很强的代表性,得到结论很多时候都可以直接参考、借鉴使用,并且很多练习还给出了一题多解,从不同角度思考、探索求解思路,系统性地加强思想、方法和内容的联系,深化理解.对于课程学习、考研、竞赛,具有很好的打牢基础,提高、巩固、拓展课程学习内容,提高课程复习,考研备考、竞赛备赛效率的效用!
对于练习题,建议自己在草稿纸上动手做完以后再参见下面给出的参考答案!参考解答一般仅仅是提供思路上的参考,过程不一定是最简单的,或者最好的,并且有时候可能还有些许小错误或者不完整、不严谨的地方!希望在对照完以后,不管是题目有问题,还是参考解答过程有问题,希望学友们能通过文后留言,或者邮件不吝指出!如果有更好的解题思路与过程,也欢迎通过公众号会话框或邮件以图片、或Word文档形式发送给管理员,管理员将尽可能在第一时间推送和大家分享,谢谢学友们的阅读与支持!
参考解答请在21点后
点击以下图片查看
更多生活、学习经历、经验
竞赛、考研、课程学习、教学资源分享
点赞、在看,相随相伴!