南京邮电大学2023考研自命题考试大纲:814高等代数

  814–《高等代数》考研大纲

  一、基本要求

  要求考生全面系统地理解高等代数的基本概念和基本理论,熟练掌握高等代数的基本思想和基本方法。要求考生具有较强的抽象思维能力、逻辑推理能力、数学运算能力以及综合运用所学知识分析问题和解决问题的能力。

  二、考试范围

  (一)多项式

  1.多项式的带余除法及整除性、最大公因式、互素多项式;

  2.不可约多项式、因式分解唯一性定理、重因式、复系数与实系数多项式的因式分解、有理系数多项式不可约的判定;

  3.多项式函数与多项式的根、代数基本定理、有理系数多项式的有理根的求法、根与系数的关系。

  (二)行列式

  1.行列式的定义及性质,行列式的子式、余子式及代数余子式;

  2.行列式按一行、列的展开定理、Cramer法则、Laplace定理和行列式乘法定理、Vandermonde行列式;

  3.运用行列式的性质及展开定理等计算行列式。

  (三)线性方程组

  1.Gauss消元法与初等变换;

  2.向量组的线性相关性、向量组的秩与极大线性无关组、矩阵的秩;

  3.线性方程组有解的判别定理与解的结构。

  (四)矩阵

  1.矩阵的基本运算、矩阵的分块及常用分块方法;

  2.矩阵的初等变换、初等矩阵、矩阵的等价、矩阵的迹、方阵的多项式;;

  3.逆矩阵、矩阵可逆的条件及与矩阵的秩和初等矩阵之间的关系,伴随矩阵及其性质;

  4.运用初等变换法求矩阵的秩及逆矩阵。